Skip to main content
Log in

Changes in biomarkers of exposure and withdrawal symptom among Chinese adult smokers after completely or partially switching from combustible cigarettes to an electronic nicotine delivery system

  • M - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

This study assessed changes in biomarkers of exposure (BoE) after 5 days of completely or partially switching to an electronic nicotine delivery system (ENDS) use, compared with continued use of combustible cigarettes and smoking abstinence among Chinese adult smokers. A randomized, open-label, parallel-arm study was conducted among Chinese adult smokers who were naive ENDS users. Forty-six subjects were randomized to 4 study groups (n = 11–12 per group): exclusive ENDS use, dual use of ENDS and cigarettes, exclusive cigarettes use, and smoking abstinence. Subjects were confined in clinic for 5 consecutive days and product use was ad libitum. Nicotine and its metabolites (cotinine and 3-hydroxycotinine), and BoEs (AAMA, CEMA, HEMA, HMPMA, 3-HPMA, SPMA, exhaled CO, and exhaled NO) were measured. Withdrawal symptom was measured using MNWS throughout the 5-day period. Six urine BoEs of volatile organic compounds decreased by 55.1–84.1% in the exclusive ENDS use group, which is similar to the smoking abstinence group (67.2–87.4%). The level of decrease was 56.8–70.4% in the dual use group and 10.7–39.0% in the cigarettes group. Urine total nicotine exposure had a non-significant increase in the exclusive ENDS use group, and plasma nicotine and cotinine showed a trend of increasing day by day. After completely or partially switching to ENDS use among Chinese smokers, exposure to selected toxicants were significantly decreased. The results of this study add to the body of evidence that exposure to toxic substance decreased among smokers after complete or partial switch from combustible cigarettes to ENDS use. As part of transition to experienced ENDS use, this study found that smokers of the initial stage who have no prior ENDS experience may increase nicotine intake after switching to ENDS use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data are available on reasonable request to the corresponding author.

References

  1. Wald NJ, Hackshaw AK (1996) Cigarette smoking: an epidemiological overview. Br Med Bull 52(1):3–11. https://doi.org/10.1093/oxfordjournals.bmb.a011530

    Article  CAS  PubMed  Google Scholar 

  2. National Health Commission of the People’s Republic of China (2021) 2020 Report on Health Hazards of Smoking in China. Beijing, National Health Commision of the People’s Republic of China.

  3. Institute of Medicine Committee to Assess the Science Base for Tobacco Harm R (2001) Clearing the smoke: assessing the science base for tobacco harm reduction. In: Stratton K, Shetty P, Wallace R, Bondurant S (eds) Washington (DC), National Academies Press (US) Copyright 2001 by the National Academy of Sciences. All rights reserved.

  4. Hatsukami DK, Carroll DM (2020) Tobacco harm reduction: Past history, current controversies and a proposed approach for the future. Prev Med 140:106099. https://doi.org/10.1016/j.ypmed.2020.106099

    Article  PubMed  PubMed Central  Google Scholar 

  5. National Academies of Sciences E, Medicine, Health, Medicine D, Board on Population H, Public Health PCommittee on the Review of the Health Effects of Electronic Nicotine Delivery S (2018) Public Health Consequences of E-Cigarettes. Eaton DL, Kwan LY, Stratton K (eds) Washington (DC), National Academies Press (US), Copyright 2018 by the National Academy of Sciences. All rights reserved

  6. Hajek P, Etter JF, Benowitz N, Eissenberg T, McRobbie H (2014) Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 109(11):1801–1810. https://doi.org/10.1111/add.12659

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tayyarah R, Long GA (2014) Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul Toxicol Pharmacol 70(3):704–710. https://doi.org/10.1016/j.yrtph.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  8. Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, Prokopowicz A, Jablonska-Czapla M, Rosik-Dulewska C, Havel C, Jacob P 3rd, Benowitz N (2014) Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control 23(2):133–139. https://doi.org/10.1136/tobaccocontrol-2012-050859

    Article  PubMed  Google Scholar 

  9. Geiss O, Bianchi I, Barahona F, Barrero-Moreno J (2015) Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int J Hyg Environ Health 218(1):169–180. https://doi.org/10.1016/j.ijheh.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Blair SL, Epstein SA, Nizkorodov SA, Staimer N (2015) A real-time fast-flow tube study of VOC and particulate emissions from electronic, potentially reduced-harm, conventional, and reference cigarettes. Aerosol Sci Technol 49(9):816–827. https://doi.org/10.1080/02786826.2015.1076156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanobe MN, Jones BA, Nelson P, Brown BG, Chen P, Makena P, Schmidt E, Darnell J, Caraway JW, Prasad GL, Nordskog B, Round EK (2022) Part three: a randomized study to assess biomarker changes in cigarette smokers switched to Vuse Solo or Abstinence. Sci Rep 12(1):20658. https://doi.org/10.1038/s41598-022-25054-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Round EK, Chen P, Taylor AK, Schmidt E (2019) Biomarkers of tobacco exposure decrease after smokers switch to an E-cigarette or nicotine gum. Nicotine Tob Res 21(9):1239–1247. https://doi.org/10.1093/ntr/nty140

    Article  CAS  PubMed  Google Scholar 

  13. O’Connell G, Graff DW, D’Ruiz CD (2016) Reductions in biomarkers of exposure (BoE) to harmful or potentially harmful constituents (HPHCs) following partial or complete substitution of cigarettes with electronic cigarettes in adult smokers. Toxicol Mech Methods 26(6):443–454. https://doi.org/10.1080/15376516.2016.1196282

    Article  CAS  PubMed  Google Scholar 

  14. Jay J, Pfaunmiller EL, Huang NJ, Cohen G, Graff DW (2020) Five-day changes in biomarkers of exposure among adult smokers after completely switching from combustible cigarettes to a nicotine-salt pod system. Nicotine Tob Res 22(8):1285–1293. https://doi.org/10.1093/ntr/ntz206

    Article  CAS  PubMed  Google Scholar 

  15. Cohen G, Goldenson NI, Bailey PC, Chan S, Shiffman S (2021) Changes in biomarkers of cigarette smoke exposure after 6 days of switching exclusively or partially to use of the JUUL system with two nicotine concentrations: a randomized controlled confinement study in adult smokers. Nicotine Tob Res 23(12):2153–2161. https://doi.org/10.1093/ntr/ntab134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morris P, McDermott S, Chapman F, Verron T, Cahours X, Stevenson M, Thompson J, Chaudhary N, O’Connell G (2022) Reductions in biomarkers of exposure to selected harmful and potentially harmful constituents following exclusive and partial switching from combustible cigarettes to myblu(™) electronic nicotine delivery systems (ENDS). Intern Emerg Med 17(2):397–410. https://doi.org/10.1007/s11739-021-02813-w

    Article  PubMed  Google Scholar 

  17. George J, Hussain M, Vadiveloo T, Ireland S, Hopkinson P, Struthers AD, Donnan PT, Khan F, Lang CC (2019) Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. J Am Coll Cardiol 74(25):3112–3120. https://doi.org/10.1016/j.jacc.2019.09.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polosa R, Morjaria JB, Prosperini U, Busà B, Pennisi A, Malerba M, Maglia M, Caponnetto P (2020) COPD smokers who switched to e-cigarettes: health outcomes at 5-year follow up. Ther Adv Chronic Dis 11:2040622320961617. https://doi.org/10.1177/2040622320961617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57(1):79–115. https://doi.org/10.1124/pr.57.1.3

    Article  CAS  PubMed  Google Scholar 

  20. Neafsey P, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B (2009) Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. J Toxicol Environ Health B Crit Rev 12(5–6):362–388. https://doi.org/10.1080/10937400903158359

    Article  CAS  PubMed  Google Scholar 

  21. Xu T, Niu ZY, Xu J, Li XD, Luo Q, Luo A, Huang YL, Jiang XT, Wu ZH (2022) Chemical analysis of selected harmful and potentially harmful constituents and in vitro toxicological evaluation of leading flavoured e-cigarette aerosols in the Chinese market. Drug Test Anal. https://doi.org/10.1002/dta.3337

    Article  PubMed  Google Scholar 

  22. Goniewicz ML, Gawron M, Smith DM, Peng M, Jacob P 3rd, Benowitz NL (2017) Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study. Nicotine Tob Res 19(2):160–167. https://doi.org/10.1093/ntr/ntw160

    Article  CAS  PubMed  Google Scholar 

  23. Yu X, Xiao D, Li B, Liu Y, Wang G, Chen J, Bai C, Pan J, Wan H, Li Q, Zhou X, Liao R, Li Q, Wang C, Chen R, Tang Y, Mo H, Zhao M, Du J, Li J, Kang L, Wang C (2010) Evaluation of the Chinese versions of the Minnesota nicotine withdrawal scale and the questionnaire on smoking urges-brief. Nicotine Tob Res 12(6):630–634. https://doi.org/10.1093/ntr/ntq063

    Article  PubMed  Google Scholar 

  24. Zhang G, Zhan J, Fu H (2022) Trends in smoking prevalence and intensity between 2010 and 2018: implications for tobacco control in China. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19020670

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Ruiz CD, Graff DW, Robinson E (2016) Reductions in biomarkers of exposure, impacts on smoking urge and assessment of product use and tolerability in adult smokers following partial or complete substitution of cigarettes with electronic cigarettes. BMC Public Health 16:543. https://doi.org/10.1186/s12889-016-3236-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benowitz NL, St Helen G, Nardone N, Cox LS, Jacob P (2020) Urine metabolites for estimating daily intake of nicotine from cigarette smoking. Nicotine Tob Res 22(2):288–292. https://doi.org/10.1093/ntr/ntz034

    Article  CAS  PubMed  Google Scholar 

  27. Farsalinos KE, Spyrou A, Stefopoulos C, Tsimopoulou K, Kourkoveli P, Tsiapras D, Kyrzopoulos S, Poulas K, Voudris V (2015) Nicotine absorption from electronic cigarette use: comparison between experienced consumers (vapers) and naïve users (smokers). Sci Rep 5:11269. https://doi.org/10.1038/srep11269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goempel K, Tedsen L, Ruenz M, Bakuradze T, Schipp D, Galan J, Eisenbrand G, Richling E (2017) Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background. Arch Toxicol 91(11):3551–3560. https://doi.org/10.1007/s00204-017-1990-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Erkekoglu P, Baydar T (2014) Acrylamide neurotoxicity. Nutr Neurosci 17(2):49–57. https://doi.org/10.1179/1476830513y.0000000065

    Article  CAS  PubMed  Google Scholar 

  30. Koszucka A, Nowak A, Nowak I, Motyl I (2020) Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr 60(10):1677–1692. https://doi.org/10.1080/10408398.2019.1588222

    Article  CAS  PubMed  Google Scholar 

  31. Keith RJ, Fetterman JL, Orimoloye OA, Dardari Z, Lorkiewicz PK, Hamburg NM, DeFilippis AP, Blaha MJ, Bhatnagar A (2020) Characterization of volatile organic compound metabolites in cigarette smokers, electronic nicotine device users, dual users, and nonusers of tobacco. Nicotine Tob Res 22(2):264–272. https://doi.org/10.1093/ntr/ntz021

    Article  PubMed  Google Scholar 

  32. Rubinstein ML, Delucchi K, Benowitz NL, Ramo DE (2018) Adolescent exposure to toxic volatile organic chemicals from E-cigarettes. Pediatrics. https://doi.org/10.1542/peds.2017-3557

    Article  PubMed  Google Scholar 

  33. Goniewicz ML, Smith DM, Edwards KC, Blount BC, Caldwell KL, Feng J, Wang L, Christensen C, Ambrose B, Borek N, van Bemmel D, Konkel K, Erives G, Stanton CA, Lambert E, Kimmel HL, Hatsukami D, Hecht SS, Niaura RS, Travers M, Lawrence C, Hyland AJ (2018) Comparison of nicotine and toxicant exposure in users of electronic cigarettes and combustible cigarettes. JAMA Netw Open 1(8):e185937. https://doi.org/10.1001/jamanetworkopen.2018.5937

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lorkiewicz P, Riggs DW, Keith RJ, Conklin DJ, Xie Z, Sutaria S, Lynch B, Srivastava S, Bhatnagar A (2019) Comparison of urinary biomarkers of exposure in humans using electronic cigarettes, combustible cigarettes, and smokeless tobacco. Nicotine Tob Res 21(9):1228–1238. https://doi.org/10.1093/ntr/nty089

    Article  CAS  PubMed  Google Scholar 

  35. Henning RJ, Johnson GT, Coyle JP, Harbison RD (2017) Acrolein can cause cardiovascular disease: a review. Cardiovasc Toxicol 17(3):227–236. https://doi.org/10.1007/s12012-016-9396-5

    Article  CAS  PubMed  Google Scholar 

  36. Bein K, Leikauf GD (2011) Acrolein—a pulmonary hazard. Mol Nutr Food Res 55(9):1342–1360. https://doi.org/10.1002/mnfr.201100279

    Article  CAS  PubMed  Google Scholar 

  37. IARC (2007) 1, 3-butadiene, ethylene oxide and vinyl halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide)

  38. Todd G, Faroon O, Jones D, Lumpkin M, Stickney J, Citra M (2006) Toxicological profile for vinyl chloride. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles, Atlanta

    Google Scholar 

  39. Coenraads PJ, Bleumink E, Nater JP (1975) Susceptibility to primary irritants: age dependence and relation to contact allergic reactions. Contact Dermatitis 1(6):377–381. https://doi.org/10.1111/j.1600-0536.1975.tb05478.x

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Yang Z, Xu L, Pan X, Liu X, Zhao J, Li X, Zhu M, Xie J (2018) Acute exposure to crotonaldehyde induces dysfunction of immune system in male Wistar rats. J Toxicol Sci 43(1):33–44. https://doi.org/10.2131/jts.43.33

    Article  CAS  PubMed  Google Scholar 

  41. Snyder R (2012) Leukemia and benzene. Int J Environ Res Public Health 9(8):2875–2893. https://doi.org/10.3390/ijerph9082875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Czoli CD, Fong GT, Goniewicz ML, Hammond D (2019) Biomarkers of exposure among “Dual Users” of tobacco cigarettes and electronic cigarettes in Canada. Nicotine Tob Res 21(9):1259–1266. https://doi.org/10.1093/ntr/nty174

    Article  CAS  PubMed  Google Scholar 

  43. Smith DM, Christensen C, van Bemmel D, Borek N, Ambrose B, Erives G, Niaura R, Edwards KC, Stanton CA, Blount BC, Wang L, Feng J, Jarrett JM, Ward CD, Hatsukami D, Hecht SS, Kimmel HL, Travers M, Hyland A, Goniewicz ML (2021) Exposure to nicotine and toxicants among dual users of tobacco cigarettes and E-cigarettes: Population Assessment of Tobacco and Health (PATH) Study, 2013–2014. Nicotine Tob Res 23(5):790–797. https://doi.org/10.1093/ntr/ntaa252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lizhnyak PN, Noggle B, Wei L, Edmiston J, Becker E, Black RA, Sarkar M (2022) Understanding heterogeneity among individuals who smoke cigarettes and vape: assessment of biomarkers of exposure and potential harm among subpopulations from the PATH Wave 1 Data. Harm Reduct J 19(1):90. https://doi.org/10.1186/s12954-022-00673-x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guo Y, Li S, Wang Z, Jiang F, Guan Y, Huang M, Zhong G (2022) Nicotine delivery and pharmacokinetics of an electronic cigarette compared with conventional cigarettes in Chinese adult smokers: a randomized open-label crossover clinical study. Nicotine Tob Res 24(12):1881–1888. https://doi.org/10.1093/ntr/ntac143

    Article  CAS  PubMed  Google Scholar 

  46. Hartmann-Boyce J, Lindson N, Butler AR, McRobbie H, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Fanshawe TR, Hajek P (2022) Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 11(11):Cd010216. https://doi.org/10.1002/14651858.CD010216.pub7

    Article  PubMed  Google Scholar 

  47. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362(24):2295–2303. https://doi.org/10.1056/NEJMra0809890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rose JE (2006) Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology 184(3–4):274–285. https://doi.org/10.1007/s00213-005-0250-x

    Article  CAS  PubMed  Google Scholar 

  49. Chen Z, Peto R, Zhou M, Iona A, Smith M, Yang L, Guo Y, Chen Y, Bian Z, Lancaster G, Sherliker P, Pang S, Wang H, Su H, Wu M, Wu X, Chen J, Collins R, Li L (2015) Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies. Lancet 386(10002):1447–1456. https://doi.org/10.1016/s0140-6736(15)00340-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the medical team in the Clinical Trial Center of Dongguan Kanghua Hospital who participated in the conduction and performance of this study. The authors also thank the cooperation and support of Guangzhou Determine Biotech Co, Ltd, Guangdong Huawei Testing Co, Ltd, and Guangzhou Huaqi Yixin Technology Co, Ltd.

Funding

This study was supported and funded by RELX Lab, Shenzhen RELX Tech. Co, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhong.

Ethics declarations

Conflict of interest

This study was funded by RELX Tech. CO, Ltd. At the time of the research, Kun Duan, Zehong Wu and Xingtao Jiang were employees of RELX Tech. Other authors declared no other conflict of interest.

Ethical approval

This study protocol and informed consent form were reviewed and approved by the Clinical Trial Research Ethics Committee of Dongguan Kanghua Hospital (Dongguan, China) (Approved No. of ethic committee: 20200701-KHCTEC-SCYJTZ-V04).

Informed consent

All participants provided written informed consent before enrolment into the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The figures 1, 2, 3 and the graphical abstract were published with incomplete graphics and low resolution. The corrected figures with high resolution were updated.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Guo, Y., Duan, K. et al. Changes in biomarkers of exposure and withdrawal symptom among Chinese adult smokers after completely or partially switching from combustible cigarettes to an electronic nicotine delivery system. Intern Emerg Med 19, 669–679 (2024). https://doi.org/10.1007/s11739-023-03518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-023-03518-y

Keywords

Navigation