Skip to main content

Advertisement

Log in

Association between HIV infection and bone mineral density in climacteric women

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

A cross-sectional study was conducted with the purpose of evaluating bone mineral density in HIV seropositive and seronegative climacteric women. HIV infection was negatively associated with bone mineral density in the lumbar spine

Purpose

To assess bone mineral density (BMD) and its associated factors in HIV seropositive and seronegative climacteric women

Methods

A cross-sectional study with 537 women (273 HIV seropositive and 264 HIV seronegative) aged between 40 and 60 years old receiving follow-up care at two hospitals in Brazil. A questionnaire on clinical and sociodemographic characteristics was completed. Laboratory tests were performed, and BMD was measured at the lumbar spine and hip. Statistical analysis was carried out by Yates and Pearson chi-squared tests, Mann–Whitney test, and multiple linear regression.

Results

The mean age was 47.7 years in HIV-seropositive women, and 75 % had nadir CD4 above 200, and 77.8 % had viral load below the detection limit. The mean age in the HIV-seronegative women was 49.8 years. The prevalence of low spinal BMD was 14.6 % in the HIV-seropositive and 4.6 % in the HIV-seronegative women (p < 0.01). The prevalence of low BMD at the femoral neck was 5.6 % in HIV-seropositive and 3.3 % in the HIV-seronegative women (p = 0.38). Multiple analyses showed that the factors associated with lower BMD at the spine were being postmenopausal and being HIV-seropositive. Being overweight was associated with a higher BMD. At the femoral neck, factors associated with lower BMD were being postmenopausal and being white. Being overweight and having a greater number of pregnancies were associated with higher BMD

Conclusions

HIV-seropositive women on long-term antiretroviral treatment and in good immunological conditions exhibited low BMD in the spine (L1–L4). However, BMD in the femoral neck was similar to non-infected women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goulet JL, Fultz SL, Rimland D, Butt A, Gibert C, Rodriguez-Barradas M, Bryant K, Justice AC (2007) Aging and infectious diseases: do patterns of comorbidity vary by HIV status, age, and HIV severity? Clin Infect Dis 45(12):1593–1601. doi:10.1086/523577

    Article  PubMed  PubMed Central  Google Scholar 

  2. Santos AFM, Assis M (2011) Vulnerabilidade das idosas HIV/AIDS: despertar das políticas públicas e profissionais de saúde no contexto da Atenção integral. Revisão da literatura. Rev Bras Geriatr Gerontol 14:147–158

    Article  Google Scholar 

  3. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20:2165–2174

    Article  PubMed  Google Scholar 

  4. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, Butt AA, Bidwell Goetz M, Leaf D et al (2013) HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 173(8):614–622. doi:10.1001/jamainternmed.2013.3728

    Article  PubMed  CAS  Google Scholar 

  5. Desai S, Landay A (2010) Early immune senescency in HIV disease. Curr HIV/AIDS Rep 7(1):4–10. doi:10.1007/s11904-009-0038-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shiels MS, Pfeiffer RM, Engels EA (2010) Age at cancer diagnosis among persons with AIDS in the United States. Ann Intern Med 153(7):452–460. doi:10.7326/0003-4819-153-7-201010050-00008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vytrysalova M, Kubena A, Vlcek J, Palicka V, Hala T, Pavelka K (2007) Knowledge of osteoporosis correlated with hormone therapy use and health status. Maturitas 56:21–29

    Article  Google Scholar 

  8. NIH, NIH consensus statements 2000 (2000) Osteoporosis prevention, diagnosis and therapy. NIH Consens Statement 17(1):1–45

    Google Scholar 

  9. World Health Organization (2003). Adherence to long term therapies: evidence for action. Available at: apps.who.int/iris/bitstream/10665/42682/1/9241545992.pdf

  10. Anjali Sharma, Hillel W. Cohen, Ruth Freeman, Nanette Santoro, Ellie E. Schoenbaum. (2011) Prospective evaluation of bone mineral density among middle-aged HIV-infected and uninfected women: Association between methadone use and bone loss. Maturitas 295–301. doi: 10.1016/j

  11. Shiau S, Broun EC, Arpadi SM, Yin MT (2013) Incident fractures in HIV-infected individuals: a systematic review and meta-analysis. AIDS 27(12):1949–1957. doi:10.1097/QAD.0b013e328361d241

    Article  PubMed  PubMed Central  Google Scholar 

  12. Womack JA, Goulet JL, Gibert C et al (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One 6(2):e17217. doi:10.1371/journal.pone.0017217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Cejtin HE, Kalinowski A, Bacchetti P, Taylor RN, Watts DH, Kim S, Massad LS, Preston-Martin S, Anastos K, Moxley M, Minkoff HL (2006) Effects of human immunodeficiency virus on protracted amenorrhea and ovarian dysfunction.Obstet. Gynecol 108(6):1423–1431

    Article  Google Scholar 

  14. Schoenbaum EE, Hartel D, Lo Y et al (2005) HIV infection, drug use, and onset of natural menopause. Clin Infect Dis 41(10):1517–1524

    Article  PubMed  Google Scholar 

  15. Clark RA, Mulligan K, Stamenovic E et al (2001) Frequency of anovulation and early menopause among women enrolled in selected adult AIDS clinical trials group studies. J Infect Dis 184(10):1325–1327

    Article  PubMed  CAS  Google Scholar 

  16. Dolan SE, Huang JS, Killilea KM, Sullivan MP, Aliabadi N, Grinspoon S (2004) Reduced bone density in HIV-infected women. AIDS 18(3):475–483

    Article  PubMed  Google Scholar 

  17. Lui-Filho JF, Valadares AL, Gomes DC, Amaral E, Pinto-Neto AM, Costa-Paiva L (2013) Menopausal symptoms and associated factors in HIV-positive women. Maturitas 76(2):172–178. doi:10.1016/j.maturitas.2013.07.012

    Article  PubMed  Google Scholar 

  18. Report of a WHO Study Group (1994) Assessment of fracture risk and itsapplication to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  19. Berry SD, Kiel DP, Donaldson MG, Cummings SR, Kanis JA, Johansson H, Samelson EJ (2010) Application of the national osteoporosis foundation guidelines to postmenopausal women and men: the framingham osteoporosis study. Osteoporos Int 21(1):53–60. doi:10.1007/s00198-009-1127-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Altman DG (1999) Practical statistics for medical research. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  21. Barros AJ, Hirakata VN (2003) Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3:21

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prior J, Burdge D, Maan E, Milner R, Hankins C, Klein M, Walmsley S (2007) Fragility fractures and bone mineral density in HIV positive women: a case–control population-based study. Osteoporos Int 18(10):1345–1353

    Article  PubMed  CAS  Google Scholar 

  23. Hamill MM, Ward KA, Pettifor JM, Norris SA, Prentice A (2013) Bone mass, body composition and vitamin D status of ARV-naïve, urban, black South African women with HIV infection, stratified by CD4 count. Osteoporos Int 24(11):2855–2861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, Colon I, Laurence J, Dobkin JF, Hammer SM, Shane E (2010) Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab 95(2):620–629. doi:10.1210/jc.2009-0708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Alderman BW, Weiss NS, Daling JR, Ure CL, Ballard JH (1986) Reproductive history and postmenopausal risk of hip and forearm fracture. Am J Epidemiol 124(2):262–267

    PubMed  CAS  Google Scholar 

  26. Fadoua A, Houda M, Siham El A, Hamza K, Bouchra S, Boubker B, Redouane A, Najia H (2007) Influence of parity on bone mineral density and peripheral fracture risk in Moroccan postmenopausal women. Maturitas 20(4):392–398, 57

    Google Scholar 

  27. Tsvetov G, Levy S, Benbassat C, Shraga-Slutzky I, Hirsch D (2014) Influence of number of deliveries and total breast-feeding time on bone mineral density in premenopausal and young postmenopausal women. Maturitas 77:249–54. doi:10.1016/j.maturitas.2013.11.003

    Article  PubMed  Google Scholar 

  28. Cuming RG, Klineberg RJ (1993) Breastfeeding and other reproductive factors and the risk of hip fractures in elderly women. Int J Epidemiol 22(4):684–689

    Article  Google Scholar 

  29. Streeten EA, Ryan KA, McBride DJ et al (2005) The relationship between parity and bone mineral density in women characterized by a homogeneous lifestyle and high parity. J Clin Endocrinol Metab 90(8):4536–4541

    Article  PubMed  CAS  Google Scholar 

  30. Michaelsson K, Baron JA, Farahmand BY, Ljunghall S (2001) Influence of parity and lactation on hip fracture risk. AmJ Epidemiol 15(12):1166–1172, 153

    Article  Google Scholar 

  31. Ei Kinai, Takeshi Nishijima, Daisuke Mizushima, Koji Watanabe, Takahiro Aoki, Haruhito Honda et al. (2014) Long-term use of protease inhibitors is associated with bone mineral density loss. Aids research and human retroviruses 553–9. doi: 10.1089/AID.2013.0252

  32. Gomes DC, Valadares AR, Moraes MJ, Lagrutta BB, Pinto-Neto AM, Lúcia Costa-Paiva L. (2015) Low bone mass in HIV-infected climacteric women receiving antiretroviral therapy: prevalence and associated factors Menopause 22(2):224–230. doi: 10.1097/GME.0000000000000282

  33. Hileman CO, Labbato DE, Storer NJ, Tangprichad V, McComsey GA (2014) Is bone loss linked to chronic inflammation in antiretroviral-naive HIV-infected adults? A 48-week matched cohort study. AIDS 28(12):1759–1767. doi:10.1097/QAD.0000000000000320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Aoife G. Cotter, Patrick W. G. Mallon.(2011) HIV infection and bone disease: implications for an aging population. Sexual Health 493–501. doi: 10.1071/SH11014

  35. Setiyohadi B, Mulansari NA, Sukmana N (2009) Reduced bone mineral density and serum C-telopeptide concentration in HIV-infected patients in Cipto Mangunkusumo Hospital. Acta Med Indones 41(4):191–194

    PubMed  Google Scholar 

  36. Mora S, Zamproni I, Zuccotti G, Vigano A (2010) Pediatric HIV infection and bone health: an emerging challenge. Front Biosci (Elite Ed) 1(2):1265–1274

    Article  Google Scholar 

Download references

Conflicts of interest

None

Financial support

The São Paulo Foundation for the Support of Research (Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)), Grant 2010/06037-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Francisco Baccaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D.C., Valadares, A.L.R., Amaral, E. et al. Association between HIV infection and bone mineral density in climacteric women. Arch Osteoporos 10, 33 (2015). https://doi.org/10.1007/s11657-015-0238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-015-0238-z

Keywords

Navigation