Skip to main content
Log in

Efficient in vitro organogenesis, micropropagation, and plumbagin production in Plumbago europaea L.

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

A Correction to this article was published on 23 November 2021

This article has been updated

Abstract

In this study, an efficient method for in vitro regeneration of Plumbago europaea was developed using direct and indirect organogenesis. Accordingly, micropropagation and regeneration were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. The effects of explant type and plant growth regulators on shoot organogenesis of P. europaea were evaluated. For the nodal explants, MS medium containing 0.5 mg/l TDZ (11.62 shoots per node) was the best medium for high frequency of micropropagation. In comparison, the highest percentage of direct organogenesis (70%) and number of shoots per explants (14.6) were acquired for the internode explants using 0.5 mg/l TDZ and 0.1 mg/l IAA. The obtained data revealed that TDZ is the most effective cytokinin for the direct shoot organogenesis. The highest indirect organogenesis rate was observed using 2 mg/l BA and 0.1 mg/l NAA for the internode explant. The maximum number of roots was distinguished on ½ MS medium containing 0.5 mg/l IBA (6.42). The rooted plantlets were gradually hardened and acclimatized under ex vitro conditions. As an important outcome, the active compound plumbagin was found mainly in the root tissues of the micro-propagated and regenerated plantlets. Taken all together, this study achieved a successful protocol for in vitro regeneration of P. europrea and could be considered for large-scale multiplication of this important medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

Change history

References

  • Al-Nuri MA, Hannoun MA, Zatar NA, Abu-Eid MA, Al-Jondi WJ, Hussein AI, Ali-Shtayeh MS (1994) Plumbagin, a naturally occurring naphthoquinone: its isolation, spectrophotometric determination in roots, stems, and leaves in Plumbago europaea L. Spectrosc lett 27:409–416

    Article  CAS  Google Scholar 

  • Alagumanian S, Perumal VS, Balachandar R, Rameshkannan K, Rao M (2004) Plant regeneration from leaf and stem explants of Solanum trilobatum L. Curr Sci 86:1478–1480

    Google Scholar 

  • Alhady M (2011) Micropropagation of Stevia rebaudiana Bertoni. A new sweetening crop in Egypt. Glob J Biotechnol Biochem 6:178–182

    Google Scholar 

  • Annadana S, Rademaker W, Ramanna M, Udayakumar M, De Jong J (2000) Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration protocols for chrysanthemum. Plant Cell Tissue Organ Cult 62:47

    Article  CAS  Google Scholar 

  • Asghari F, Hossieni B, Hassani A, Shirzad H (2012) Effect of explants source and different hormonal combinations on direct regeneration of basil plants (Ocimum basilicum L.). Aust J Agric Eng 3:12–17

    Google Scholar 

  • Babaei N, Abdullah P, Ashikin N, Saleh G, Lee Abdullah T (2014) An efficient in vitro plantlet regeneration from shoot tip cultures of Curculigo latifolia, a medicinal plant. Sci World J 2014:1–9

    Google Scholar 

  • Banthorpe DV, Branch SA, Njar VC, Osborne MG, Watson DG (1986) Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochemistry 25:629–636

    Article  CAS  Google Scholar 

  • Barna K, Wakhlu A (1995) Effects of thidiazuron on micropropagation of rose. In Vitro Cell Dev Biol Plant 31:44–46

    Article  CAS  Google Scholar 

  • Beigmohamadi M, Movafeghi A, Jafari S, Sharafi A (2020) Potential of the genetically transformed root cultures of Plumbago europaea for biomass and plumbagin production. Biotechnol Prog 36:1–6

    Article  Google Scholar 

  • Beigmohamadi M, Movafeghi A, Sharafi A, Jafari S, Danafar H (2019) Cell suspension culture of Plumbago europaea L. towards production of plumbagin. Iran J biotechnol 17:46–54

    Article  Google Scholar 

  • Bhadra S, Akhter T, Hossain M (2009) In vitro micropropagation of Plumbago indica L. through induction of direct and indirect organogenesis. Plant Tissue Cult Biotechnol 19:169–175

    Article  Google Scholar 

  • Bhatia S, Sharma K, Dahiya R, Bera T (2015) Modern applications of plant biotechnology in pharmaceutical sciences, 1st edn. Academic Press, Cambridge, Massachusetts

  • Biswas KK, Mohri T, Kogawara S, Hase Y, Oono Y (2012) An improved system for shoot regeneration from stem explants of Lombardy poplar (Populus nigra L. var. italica Koehne). Am J Plant Sci 3:1181–1186

    Article  CAS  Google Scholar 

  • Ceasar SA, Ayyanar M, Ignacimuthu S (2013) An improved micropropagation protocol for Plumbago zeylanica L. An important medicinal plant. Asian J Biol Sci 6:214–220

    Article  CAS  Google Scholar 

  • Chandravanshi M, Sahu Y, Agrawal A, Raja W (2014) In vitro micropropagation of important commercial medicinal plant: Plumbago zeylanica. Adv Biol Res 8:139–142

    Google Scholar 

  • Chaplot B, Vadawale A, Jhala J, Barve D (2005) Clonal propagation of value added medicinal plant-Safed musli Chlorophytum borivilianum). Recent Progress in Medicinal Plants, Govil JN and Singh VK (Eds.), Studium Press, LLC: Texas, USA, pp. 383-388

  • Chatterjee T, Ghosh B (2015) Simple protocol for micropropagation and in vitro conservation of Plumbago zeylanica L.: an important indigenous medicinal plant. Int J Bio-resour Stress Manag 6:68–75

    Article  Google Scholar 

  • Close K, Gallagher-Ludeman L (1989) Structure-activity relationships of auxin-like plant growth regulators and genetic influences on the culture induction response in maize (Zea mays L.). Plant Sci 61:245–252

    Article  CAS  Google Scholar 

  • Corral P, Mallón R, Rodríguez-Oubiña J, González ML (2011) Multiple shoot induction and plant regeneration of the endangered species Crepis novoana. Plant Cell Tissue Organ Cult 105:211–217

    Article  CAS  Google Scholar 

  • Das G, Rout G (2002) Plant regeneration through somatic embryogenesis in leaf derived callus of Plumbago rosea. Biol Plant 45:299–302

    Article  Google Scholar 

  • Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57:111–116

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan M, Janarthananm B, Sai GL, Sekar T (2009) Plant regeneration from leaf explants of Plumbago. Plant Tissue Cult Biotechnol 19:79–87

    Article  Google Scholar 

  • Gradner U (1991) Plumbago indica, choice of growth media, fertilization and in vitro propagation. Deutscher Gartenbau, Germany FR

    Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu L, Wei Y (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10:8984–9000

    Article  CAS  Google Scholar 

  • Ghorbani S, Kosari-Nasab M, Mahjouri S, Talebpour AH, Movafeghi A, Maggi F (2021) Enhancement of in vitro production of volatile organic compounds by shoot differentiation in Artemisia spicigera. Plants 10:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque F, Hassan AS, Jahan MAA, Roy SK (2012) In vitro shoot proliferation and plant regeneration of Plumbago indica L. (Ractochita), a rare medicinal shrub of Bangladesh. Bangladesh J Sci Ind Res 47:197–202

    Article  CAS  Google Scholar 

  • Harikrishnan K, Hariharan M (1996) Direct shoot regeneration from nodal explants of Plumbago rosea Linn. - a medicinal plant. Phytomorphology 46:53–58

    Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119

    Article  CAS  Google Scholar 

  • Hussain H, Krohn K, Ahmad VU, Miana GA, Green IR (2007) Lapachol: an overview. Arkivoc 2007:145

    Article  Google Scholar 

  • Iwashina T (2013) Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci 39:25–51

    Google Scholar 

  • Jahan AA, Anis M (2009) In vitro rapid multiplication and propagation of Cardiospermum halicacabum L. through axillary bud culture. Acta Physiol Plant 31:133–138

    Article  CAS  Google Scholar 

  • Jiang B, Yang Y-G, Guo Y-M, Guo Z-C, Chen Y-Z (2005) Thidiazuron-induced in vitro shoot organogenesis of the medicinal plant Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol Plant 41:677–681

    Article  CAS  Google Scholar 

  • Jose B, Satheeshkumar K, Seeni S (2007) A protocol for high frequency regeneration through nodal explant cultures and ex vitro rooting of Plumbago rosea L. Pak J Biol Sci 10:349–355

    Article  CAS  PubMed  Google Scholar 

  • Kaewpoo M, Te-chato S (2009) Influence of explant types and plant growth regulators on multiple shoot formation from Jatropha curcas. Sci Asia 35:353–357

    Article  Google Scholar 

  • Kasula K, Prasad S, Umate P, Gadidasu K, Abbagani S (2008) Efficient TDZ and IAA-assisted plant regeneration from cotyledon and leaf explants of Capsicum annuum L. - one-step protocol for shoot bud differentiation and elongation. Int J Plant Dev Biol 2:114–117

    Google Scholar 

  • Kaul V, Miller RM, Hutchinson JF, Richards D (1990) Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tissue Organ Cult 21:21–30

    Article  CAS  Google Scholar 

  • Kitanov G, Pashankov P (1994) Quantitative investigation on the dynamics of plumbagin in Plumbago europaea L. roots and herb by HPLC. Pharmazie 49:1–6

    Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubo I, Uchida M, Klocke JA (1983) An insect ecdysis inhibitor from the African medicinal plant, Plumbago capensis (Plumbaginaceae); a naturally occurring chitin synthetase inhibitor. Agric Biol Chem 47:911–913

    CAS  Google Scholar 

  • Kumlay AM, Ercisli S (2015) Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnol Biotechnol Equip 29:1075–1084

    Article  CAS  Google Scholar 

  • Kuo P-L, Hsu Y-L, Cho C-Y (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  CAS  PubMed  Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2010) High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med 76:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J (1998) Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 64:237–241

    Article  CAS  PubMed  Google Scholar 

  • Malathy S, Pai J (1998) Micropropagation of Ixora singaporensis (Linn.): An ornamental shrub. Curr Sci 75:545–547

    Google Scholar 

  • Moshtaghi N (2020) Tissue and cell culture of saffron. Elsevier, Saffron, pp 229–246

    Google Scholar 

  • Muhammad HM, Saour KY, Naqishbandi AM (2009) Quantitative and qualitative analysis of plumbagin in the leaf and root of Plumbago europaea growing naturally in Kurdistan by HPLC. Iraqi J Pharm Sci 18:54–59

    Google Scholar 

  • Murthy B, Murch S, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nair SV, Baranwal G, Chatterjee M, Sachu A, Vasudevan AK, Bose C (2016) Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int J Med Microbiol 306:237–248

    Article  CAS  PubMed  Google Scholar 

  • Najaf-Abadi AJ, Hamidoghli Y (2009) Micropropagation of thornless trailing blackberry (‘Rubus sp’.) by axillary bud explants. Aust J Crop Sci 3:191–194

    CAS  Google Scholar 

  • Nazari F, Khosh-Khui M, Azadi P (2016) A simple and efficient direct shoot organogenesis method using leafy petiole explants in Gerbera jamesonii ‘royal soft pink.’ Int J Hortic Sci Technol 3:51–58

    CAS  Google Scholar 

  • Nowakowska M, Pavlović Ž, Nowicki M, Boggess SL, Trigiano RN (2020) In vitro propagation of an endangered Helianthus verticillatus by axillary bud proliferation. Plants 9:712

    Article  CAS  PubMed Central  Google Scholar 

  • Panizza M, Tognoni F (1992) Micropropagation of lavandin (Lavandula officinalis Chaix× Lavandula latifolia Villars cv. Grosso). High-Tech and Micropropagation III. Springer, pp 295-305.

  • Patidar S, Tripathi M, Tiwari G, Chundawat R, Pandey A, Patidar H, Pandey G (2013) In vitro micropropagation of Plumbago zeylanica Linn. through nodal segment and leaf explants. Plant Cell Biotech Mol Biol 14:72–83

    Google Scholar 

  • Pierik RLM (1997) In vitro culture of higher plants. Springer science & business media

  • Pourebad N, Motafakkerazad R, Kosari-Nasab M, Akhtar NF, Movafeghi A (2015) The influence of TDZ concentrations on in vitro growth and production of secondary metabolites by the shoot and callus culture of Lallemantia iberica. Plant Cell Tissue and Organ Cult 122:331–339

    Article  CAS  Google Scholar 

  • Rechinger KH, Schiman-Czeika H (1974) Plumbaginaceae. In: Rechinger KH (ed), Flora Iranica, No. 108, Akademische Druck und Verlagsanstalt, Graz, pp 2-3

  • Rout G, Saxena C, Samantaray S, Das P (1999) Rapid plant regeneration from callus cultures of Plumbago zeylanica. Plant Cell Tissue Organ Cult 56:47–51

    Article  Google Scholar 

  • Sajid ZA, Aftab F (2009) Effect of thidiazuron (TDZ) on in vitro micropropagation of Solanum tuberosum L. cvs. Desiree and Cardinal. Pak J Bot 41:1811–1815

    CAS  Google Scholar 

  • Sanavy S, Moeini MJ (2003) Effects of different hormone combinations and planting beds on growth of single nodes and plantlets resulted from potato meristem culture. Plant Tissue Cult 13:145–150

    Google Scholar 

  • Selvakumar V, Anbudurai P, Balakumar T (2001) In vitro propagation of the medicinal plant Plumbago zeylanica L. through nodal explants. In Vitro Cell Dev Biol Plant 37:280–284

    Article  CAS  Google Scholar 

  • Sharma U, Agrawal V (2018) In vitro shoot regeneration and enhanced synthesis of plumbagin in root callus of Plumbago zeylanica L.—an important medicinal herb. In Vitro Cell Dev Biol Plant 54:423–435

    Article  CAS  Google Scholar 

  • Singh A, Reddy MP, Chikara J, Singh S (2010) A simple regeneration protocol from stem explants of Jatropha curcas—a biodiesel plant. Ind Crop Prods 31:209–213

    Article  CAS  Google Scholar 

  • Song JY, Mattson NS, Jeong BR (2011) Efficiency of shoot regeneration from leaf, stem, petiole and petal explants of six cultivars of Chrysanthemum morifolium. Plant Cell Tissue Organ Cult 107:295

    Article  Google Scholar 

  • Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult 44:135–141

    Article  Google Scholar 

  • Tomsone S, Gertnere D (2003) In vitro shoot regeneration from flower and leaf explants in Rhododendron. Biol Plant 46:463–465

    Article  Google Scholar 

  • Türker AU, Yücesan B, Gürel E (2010) Adventitious shoot regeneration from stem internode explants of Verbena officinalis L., a medicinal plant. Turk J Biol 34:297–304

    Google Scholar 

  • Yucesan B, Turker AU, Gurel E (2007) TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.). Plant Cell Tissue Organ Cult 91:243–250

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Zanjan University of Medical Sciences, Zanjan, Iran (grant number: A-12-848-5) and the University of Tabriz, Tabriz, Iran. All authors have agreed to the order of authorship for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Movafeghi or Ali Sharafi.

Additional information

The original online version of this article was revised: The name of coauthor Ali Movafeghi was presented incorrectly (as “Movafeghi Ali”) in this article as originally published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beigmohamadi, M., Movafeghi, A., Jafari, S. et al. Efficient in vitro organogenesis, micropropagation, and plumbagin production in Plumbago europaea L.. In Vitro Cell.Dev.Biol.-Plant 57, 820–830 (2021). https://doi.org/10.1007/s11627-021-10224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10224-x

Keywords

Navigation