Skip to main content
Log in

Deep learning-based detection of patients with bone metastasis from Japanese radiology reports

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Deep learning (DL) is a state-of-the-art technique for developing artificial intelligence in various domains and it improves the performance of natural language processing (NLP). Therefore, we aimed to develop a DL-based NLP model that classifies the status of bone metastasis (BM) in radiology reports to detect patients with BM.

Materials and Methods

The DL-based NLP model was developed by training long short-term memory using 1,749 free-text radiology reports written in Japanese. We adopted five-fold cross-validation and used 200 reports for testing the five models. The accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristics curve (AUROC) were used for the model evaluation.

Results

The developed model demonstrated classification performance with mean ± standard deviation of 0.912 ± 0.012, 0.924 ± 0.029, 0.901 ± 0.014, 0.898 ± 0.012, and 0.968 ± 0.004 for accuracy, sensitivity, specificity, precision, and AUROC, respectively.

Conclusion

The proposed DL-based NLP model may help in the early and efficient detection of patients with BM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Savova GK, Danciu I, Alamudun F, Miller T, Lin C, Bitterman DS, et al. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Res. 2019;79(21):5463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bao Y, Deng Z, Wang Y, Kim H, Armengol VD, Acevedo F, et al. Using machine learning and natural language processing to review and classify the medical literature on cancer susceptibility genes. JCO Clin Cancer Inform. 2019;3:1–9.

    Article  PubMed  Google Scholar 

  3. Hughes KS, Zhou J, Bao Y, Singh P, Wang J, Yin K. Natural language processing to facilitate breast cancer research and management. Breast J. 2020;26(1):92–9.

    Article  PubMed  Google Scholar 

  4. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dang NC, Moreno-García MN, De la Prieta F. Sentiment analysis based on deep learning: a comparative study. Electronics. 2020;9(3):483.

    Article  Google Scholar 

  6. Yim WW, Yetisgen M, Harris WP, Kwan SW. natural language processing in oncology: a review. JAMA Oncol. 2016;2(6):797–804.

    Article  PubMed  Google Scholar 

  7. Fu S, Wyles CC, Osmon DR, Carvour ML, Sagheb E, Ramazanian T, et al. Automated detection of periprosthetic joint infections and data elements using natural language processing. J Arthroplasty. 2021;36(2):688–92.

    Article  PubMed  Google Scholar 

  8. Zhang K, Demner-Fushman D. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations. J Am Med Inform Assoc. 2017;24(4):781–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cancer Statistics. Cancer Information Service, National Cancer Center, Japan (National Cancer Registry, Ministry of Health, Labour and Welfare). https://www.mhlw.go.jp/content/10900000/000942181.pdf. Accessed 23 Mar 2023

  10. Hara H, Sakai Y, Kawamoto T, Fukase N, Kawakami Y, Takemori T, et al. Surgical outcomes of metastatic bone tumors in the extremities (Surgical outcomes of bone metastases). J Bone Oncol. 2021;27:100352.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ulas A, Bilici A, Durnali A, Tokluoglu S, Akinci S, Silay K, et al. Risk factors for skeletal-related events (SREs) and factors affecting SRE-free survival for nonsmall cell lung cancer patients with bone metastases. Tumour Biol. 2016;37(1):1131–40.

    Article  CAS  PubMed  Google Scholar 

  12. Callen JL, Westbrook JI, Georgiou A, Li J. Failure to follow-up test results for ambulatory patients: a systematic review. J Gen Intern Med. 2012;27(10):1334–48.

    Article  PubMed  Google Scholar 

  13. Poon EG, Gandhi TK, Sequist TD, Murff HJ, Karson AS, Bates DW. I wish I had seen this test result earlier: dissatisfaction with test result management systems in primary care. Arch Intern Med. 2004;164(20):2223–8.

    Article  PubMed  Google Scholar 

  14. Singh H, Sethi S, Raber M, Petersen LA. Errors in cancer diagnosis: current understanding and future directions. J Clin Oncol. 2007;25(31):5009–18.

    Article  PubMed  Google Scholar 

  15. Do RK, Lupton K, Causa Andrieu PI, Luthra A, Taya M, Batch K, et al. Patterns of metastatic disease in patients with cancer derived from natural language processing of structured CT radiology reports over a 10-year period. Radiology. 2021;301(1):115–22.

    Article  PubMed  Google Scholar 

  16. Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, et al. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol. 2019;5(10):1421–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://taku910.github.io/mecab/. Accessed 12 May 2022

  18. MANBYO Dictonary. Large-scale disease name dictionary for tabulating and analyzing diesase names acutually used in clinical settings. https://sociocom.jp/~data/2018-manbyo/index.html. Accessed 12 May 2022

  19. Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.

    Article  PubMed  Google Scholar 

  20. Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: lstm cells and network architectures. Neural Comput. 2019;31(7):1235–70.

    Article  PubMed  Google Scholar 

  21. Han S, Oh JS, Lee JJ. Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49(2):585–95.

    Article  PubMed  Google Scholar 

  22. Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep. 2020;10(1):17046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.

    PubMed  PubMed Central  Google Scholar 

  24. Jang M, Kim M, Bae SJ, Lee SH, Koh JM, Kim N. Opportunistic osteoporosis screening using chest radiographs with deep learning: development and external validation with a cohort dataset. J Bone Miner Res. 2022;37(2):369–77.

    Article  PubMed  Google Scholar 

  25. Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, et al. Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med. 2021;83:64–71.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen Q-N, Chun SG, Chow E, Komaki R, Liao Z, Zacharia R, et al. Single-fraction stereotactic vs conventional multifraction radiotherapy for pain relief in patients with predominantly nonspine bone metastases. JAMA Oncol. 2019;5(6):665.

    Article  Google Scholar 

  27. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the sabr-comet phase ii randomized trial. J Clin Oncol. 2020;38(25):2830–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kawazoe Y, Shibata D, Shinohara E, Aramaki E, Ohe K. A clinical specific bert developed using a huge Japanese clinical text corpus. PLoS ONE. 2021;16(11):0259763.

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI [grant number JP18K15567].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Takegawa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study was performed in accordance with the Declaration of Helsinki and was approved by the Institutional Review Board of the Kansai Medical University Hospital (approval number: 2018244).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, K., Takegawa, H., Yui, M. et al. Deep learning-based detection of patients with bone metastasis from Japanese radiology reports. Jpn J Radiol 41, 900–908 (2023). https://doi.org/10.1007/s11604-023-01413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-023-01413-2

Keywords

Navigation