Skip to main content
Log in

CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex

  • Computed Tomography
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.

Materials and methods

We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions.

Results

The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).

Conclusion

Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUROC:

Area Under the Receiver Operating Characteristic curve

BMD:

Bone Mineral Density

CT:

Computed Tomography

DXA:

Dual-Energy X-ray Absorptiometry

FRAX:

Fracture Risk Assessment Tool

ICC:

Intraclass Correlation Coefficient

MAD:

Median Absolute Deviation

VF:

Vertebral Fracture

References

  1. Baum T, Gräbeldinger M, Räth C et al (2014) Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? J Bone Miner Metab 32:56–64. https://doi.org/10.1007/s00774-013-0465-6

    Article  PubMed  Google Scholar 

  2. Hemmatian H, Bakker AD, Klein-Nulend J, Van Lenthe H, G, (1914) Aging, Osteocytes, and Mechanotransduction. Curr Osteoporos Rep. https://doi.org/10.1007/s11914-017-0402-z

    Article  Google Scholar 

  3. Russo CR, Lauretani F, Bandinelli S et al (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538. https://doi.org/10.1007/s00198-002-1322-y

    Article  CAS  PubMed  Google Scholar 

  4. Yu A, Huang M, Wang L et al (2023) Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density based on MRI and quantitative CT. Eur J Radiol 159:110669. https://doi.org/10.1016/j.ejrad.2022.110669

    Article  PubMed  Google Scholar 

  5. Kanis JA, Cooper C, Rizzoli R, Reginster J-Y (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  PubMed  Google Scholar 

  6. Tamimi I, Cortes ARG, Sánchez-Siles J-M et al (2020) Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis. Bone 140:115558. https://doi.org/10.1016/j.bone.2020.115558

    Article  CAS  PubMed  Google Scholar 

  7. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  8. Hong JH, Jung J-Y, Jo A et al (2021) Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT. Radiology 299:626–632. https://doi.org/10.1148/radiol.2021203783

    Article  PubMed  Google Scholar 

  9. Staal FCR, van der Reijd DJ, Taghavi M et al (2021) Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review. Clin Colorectal Cancer 20:52–71. https://doi.org/10.1016/j.clcc.2020.11.001

    Article  PubMed  Google Scholar 

  10. Sun Q, Chen Y, Liang C et al (2021) Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 301(3):203281. https://doi.org/10.1148/radiol.2021203281

    Article  Google Scholar 

  11. Hinzpeter R, Baumann L, Guggenberger R et al (2021) Radiomics for detecting prostate cancer bone metastases invisible in CT: a proof-of-concept study. Eur Radiol. https://doi.org/10.1007/s00330-021-08245-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. He L, Liu Z, Liu C et al (2021) Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis. Acad Radiol 28:e165–e171. https://doi.org/10.1016/j.acra.2020.03.046

    Article  PubMed  Google Scholar 

  13. Biamonte E, Levi R, Carrone F et al (2022) Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures. J Endocrinol Invest 45:2007–2017. https://doi.org/10.1007/s40618-022-01837-z

    Article  CAS  PubMed  Google Scholar 

  14. Franke K, Gaser C (2019) Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol 10:789. https://doi.org/10.3389/fneur.2019.00789

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han Y, Wang G (2020) Skeletal bone age prediction based on a deep residual network with spatial transformer. Comput Methods Programs Biomed 197:105754. https://doi.org/10.1016/j.cmpb.2020.105754

    Article  PubMed  Google Scholar 

  16. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  17. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fortin J-P, Cullen N, Sheline YI et al (2018) Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024

    Article  PubMed  Google Scholar 

  20. Ozaki Y, Tanigaki Y, Watanabe S, Onishi M (2020) Multiobjective tree-structured parzen estimator for computationally expensive optimization problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. ACM, New York, NY, USA, pp 533–541

  21. Hsieh C-I, Zheng K, Lin C et al (2021) Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nat Commun 12:5472. https://doi.org/10.1038/s41467-021-25779-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smets J, Shevroja E, Hügle T et al (2021) Machine Learning Solutions for Osteoporosis—A Review. J Bone Miner Res 36:833–851. https://doi.org/10.1002/jbmr.4292

    Article  PubMed  Google Scholar 

  23. Fang Y, Li W, Chen X et al (2021) Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks. Eur Radiol 31:1831–1842. https://doi.org/10.1007/s00330-020-07312-8

    Article  PubMed  Google Scholar 

  24. Valentinitsch A, Trebeschi S, Kaesmacher J et al (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30:1275–1285. https://doi.org/10.1007/s00198-019-04910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawashima Y, Fujita A, Buch K et al (2019) Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur J Radiol 116:212–218. https://doi.org/10.1016/j.ejrad.2019.05.009

    Article  PubMed  Google Scholar 

  26. Sun W, Liu S, Guo J et al (2021) A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours. Cancer Imaging 21:20. https://doi.org/10.1186/s40644-021-00387-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dionísio FCF, Oliveira LS, Hernandes MA et al (2020) Manual and semiautomatic segmentation of bone sarcomas on MRI have high similarity. Brazilian J Med Biol Res. https://doi.org/10.1590/1414-431x20198962

    Article  Google Scholar 

  28. Eweje FR, Bao B, Wu J et al (2021) Deep learning for classification of bone lesions on routine MRI. EBioMedicine 68:103402. https://doi.org/10.1016/j.ebiom.2021.103402

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geirhos R, Jacobsen J-H, Michaelis C et al (2020) Shortcut learning in deep neural networks. Nat Mach Intell 2:665–673. https://doi.org/10.1038/s42256-020-00257-z

    Article  Google Scholar 

  30. DeGrave AJ, Janizek JD, Lee S-I (2021) AI for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 3:610–619. https://doi.org/10.1038/s42256-021-00338-7

    Article  Google Scholar 

  31. Berenguer R, del Pastor-Juan M, R, Canales-Vázquez J, et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415. https://doi.org/10.1148/radiol.2018172361

    Article  PubMed  Google Scholar 

  32. van Hamersvelt RW, Schilham AMR, Engelke K et al (2017) Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol 27:4351–4359. https://doi.org/10.1007/s00330-017-4801-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Euler A, Nowak T, Bucher B et al (2021) Assessment of bone mineral density from a computed tomography topogram of photon-counting detector computed tomography—effect of phantom size and tube voltage. Invest Radiol 56:614–620. https://doi.org/10.1097/RLI.0000000000000781

    Article  CAS  PubMed  Google Scholar 

  34. Niu YT, Olszewski ME, Zhang YX et al (2011) Experimental study and optimization of scan parameters that influence radiation dose in temporal bone high-resolution multidetector row CT. Am J Neuroradiol 32:1783–1788. https://doi.org/10.3174/ajnr.A2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25:44–56. https://doi.org/10.1038/s41591-018-0300-7

    Article  CAS  PubMed  Google Scholar 

  36. Bogowicz M, Jochems A, Deist TM et al (2020) Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer. Sci Rep 10:4542. https://doi.org/10.1038/s41598-020-61297-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray N, Le M, Ebrahimzadeh O et al (2017) Imaging the spine with dual-energy CT. Curr Radiol Rep 5:9. https://doi.org/10.1007/s40134-017-0236-6

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RL, FG, MB, DR, MM, and GA. The first draft of the manuscript was written by RL, LSP and MG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Letterio S. Politi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of IRCCS-Humanitas Research Hospital (March 22, 2022 / 2410).

Consent to participate

The collection of written informed consent was waived by Ethics Committee due to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levi, R., Garoli, F., Battaglia, M. et al. CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex. Radiol med 128, 744–754 (2023). https://doi.org/10.1007/s11547-023-01641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01641-6

Keywords

Navigation