Skip to main content

Advertisement

Log in

Prediction of the mitotic index and preoperative risk stratification of gastrointestinal stromal tumors with CT radiomic features

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

The objective is to develop a mitotic prediction model and preoperative risk stratification nomogram for gastrointestinal stromal tumor (GIST) based on computed tomography (CT) radiomic features.

Methods

A total of 267 GIST patients from 2009.07 to 2015.09 were retrospectively collected and randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest was delineated from the portal-phase images on contrast-enhanced (CE)-CT, and radiomic features were extracted. Lasso regression method was used to select valuable features to establish a radiomic model for predicting mitotic index in GIST. Finally, the nomogram of preoperative risk stratification was constructed by combining the radiomic features and clinical risk factors.

Results

Four radiomic features closely related to the level of mitosis were obtained, and a mitotic radiomic model was constructed. The area under the curve (AUC) of the radiomics signature model used to predict mitotic levels in training and validation cohorts (training cohort AUC = 0.752; 95% confidence interval [95%CI] 0.674–0.829; validation cohort AUC = 0.764; 95% CI 0.667–0.862). Finally, the preoperative risk stratification nomogram combining radiomic features was equivalent to the clinically recognized gold standard AUC (0.965 vs. 0.983) (p = 0.117). The Cox regression analysis found that the nomogram score was one of the independent risk factors for the long-term prognosis of the patients.

Conclusion

Preoperative CT radiomic features can effectively predict the level of mitosis in GIST, and combined with preoperative tumor size, accurate preoperative risk stratification can be performed to guide clinical decision-making and individualized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available for bona fide researchers who request it from the authors.

Abbreviations

GIST(s):

Gastrointestinal stromal tumor(s)

CT:

Computed tomography

ROI:

Region of interest

CE-CT:

Contrast-enhanced computed tomography

LASSO:

Least absolute shrinkage and selection operator

AUC:

Area under the curve

CI:

Confidence interval

NIH:

National Institutes of Health

NCCN:

National Comprehensive Cancer Network

BMI:

Body mass index

ICC:

Intraclass correlation coefficient

GLCM:

Gray-level co-occurrence matrix

GLRLM:

Gray-level run-length matrix

GLSZM:

Gray-level size zone matrix

GLDM:

Gray-level dependence matrix

NGTDM:

Neighboring gray tone difference matrix

ROC:

Receiver operating characteristic

RFS:

Recurrence-free survival

OS:

Overall survival

HR:

Hazard ratio

References

  1. Joensuu H, Hohenberger P, Corless CL (2013) Gastrointestinal stromal tumour. Lancet 382(9896):973–983. https://doi.org/10.1016/S0140-6736(13)60106-3

    Article  CAS  PubMed  Google Scholar 

  2. Parab TM, DeRogatis MJ, Boaz AM et al (2019) Gastrointestinal stromal tumors: a comprehensive review. J Gastrointest Oncol 10:144–154. https://doi.org/10.21037/jgo.2018.08.20

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson WJ, Doyle LA (2021) Updates from the 2020 World Health Organization classification of soft tissue and bone tumours. Histopathology 78(5):644–657. https://doi.org/10.1111/his.14265

    Article  PubMed  Google Scholar 

  4. Mantese G (2019) Gastrointestinal stromal tumor: epidemiology, diagnosis, and treatment. Curr Opin Gastroenterol 35(6):555–559. https://doi.org/10.1097/MOG.0000000000000584

    Article  CAS  PubMed  Google Scholar 

  5. Akahoshi K, Oya M, Koga T, Shiratsuchi Y (2018) Current clinical management of gastrointestinal stromal tumor. World J Gastroenterol 24(26):2806–2817. https://doi.org/10.3748/wjg.v24.i26.2806

    Article  PubMed  PubMed Central  Google Scholar 

  6. Minoda Y, Esaki M, Ihara E et al (2022) Auxiliary diagnosis of subepithelial lesions by impedance measurement during endoscopic ultrasound guided fine-needle biopsy. Gastrointest Endosc S0016–5107(22):02197–02206. https://doi.org/10.1016/j.gie.2022.11.022

    Article  Google Scholar 

  7. Zhang Y, Renberg S, Papakonstantinou A et al (2022) Diagnosing gastrointestinal stromal tumors: the utility of fine-needle aspiration cytology versus biopsy. Cancer Med 14:2729–2734. https://doi.org/10.1002/cam4.4630

    Article  Google Scholar 

  8. Christensen AW, Goldberg AF (2022) Mitotic count of fine needle aspiration material of gastrointestinal stromal tumours of the stomach underestimates actual mitotic count. Cytopathology 331:100–106. https://doi.org/10.1111/cyt.13050

    Article  Google Scholar 

  9. Fernández J, Gómez-Ruiz AJ, Olivares V et al (2018) Clinical and pathological features of “small” GIST (≤2 cm): What is their prognostic value? Eur J Surg Oncol 44:580–586. https://doi.org/10.1016/j.ejso.2018.01.087

    Article  PubMed  Google Scholar 

  10. Hølmebakk T, Wiedswang AM, Meza-Zepeda LA et al (2021) Integrating anatomical, molecular and clinical risk factors in gastrointestinal stromal tumor of the stomach. Ann Surg Oncol 28(11):6837–6845. https://doi.org/10.1245/s10434-021-09605-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nishida T, Hølmebakk T, Raut CP, Rutkowski P (2019) Defining tumor rupture in gastrointestinal stromal tumor. Ann Surg Oncol 26(6):1669–1675. https://doi.org/10.1245/s10434-019-07297-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hølmebakk T, Hompland I, Bjerkehagen B et al (2018) Recurrence-free survival after resection of gastric gastrointestinal stromal tumors classified according to a strict definition of tumor rupture: a population-based study. Ann Surg Oncol 25(5):1133–1139. https://doi.org/10.1245/s10434-018-6353-5

    Article  PubMed  Google Scholar 

  13. Casali PG, Blay JY, Abecassis N et al (2022) Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 33(1):20–33. https://doi.org/10.1016/j.annonc.2021.09.005

    Article  CAS  PubMed  Google Scholar 

  14. van der Graaf WTA, Tielen R, Bonenkamp JJ et al (2018) Nationwide trends in the incidence and outcome of patients with gastrointestinal stromal tumour in the imatinib era. Br J Surg 105(8):1020–1027. https://doi.org/10.1002/bjs.10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Randall RL, Benjamin RS, Boles S et al (2018) Soft Tissue Sarcoma, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 16(5):536–563

    Article  PubMed  Google Scholar 

  16. Fairweather M, Balachandran VP, Li GZ et al (2018) Cytoreductive surgery for metastatic gastrointestinal stromal tumors treated with tyrosine kinase inhibitors: a 2-institutional analysis. Ann Surg 268(2):296–302. https://doi.org/10.1097/SLA.0000000000002281

    Article  PubMed  Google Scholar 

  17. Li J, Ye Y, Wang J et al (2017) Chinese consensus guidelines for diagnosis and management of gastrointestinal stromal tumor. Chin J Cancer Res 29(4):281–293. https://doi.org/10.21147/j.issn.1000-9604.2017.04.01

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39(10):1411–1419. https://doi.org/10.1016/j.humpath.2008.06.025

    Article  PubMed  Google Scholar 

  19. Li GZ, Raut CP (2019) Targeted therapy and personalized medicine in gastrointestinal stromal tumors: drug resistance, mechanisms, and treatment strategies. Onco Targets Ther 12:5123–5133. https://doi.org/10.2147/OTT.S180763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Qingyao Wu, Lei Xu et al (2020) Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer. Radiother Oncol 150:89–96. https://doi.org/10.1016/j.radonc.2020.06.004

    Article  PubMed  Google Scholar 

  21. Wang Y, Liu W, Yang Yu et al (2020) CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol 30(2):976–986. https://doi.org/10.1007/s00330-019-06398-z

    Article  PubMed  Google Scholar 

  22. Li M, Zhang J, Dan Y et al (2020) A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer. J Transl Med 18(1):46. https://doi.org/10.1186/s12967-020-02215-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park S, Sham JG, Kawamoto S et al (2021) CT radiomics-based preoperative survival prediction in patients with pancreatic ductal adenocarcinoma. AJR Am J Roentgenol 217(5):1104–1112. https://doi.org/10.2214/AJR.20.23490

    Article  PubMed  Google Scholar 

  24. Jiang Y, Chen C, Xie J et al (2018) Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine 36:171–182. https://doi.org/10.1016/j.ebiom.2018.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  25. Autorino R, Gui B, Panza G et al (2022) Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy. Radiol Med 127(5):498–506. https://doi.org/10.1007/s11547-022-01482-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dongsheng Gu, Yabin Hu, Ding H et al (2019) CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol 29(12):6880–6890. https://doi.org/10.1007/s00330-019-06176-x

    Article  Google Scholar 

  27. Sun R, Limkin EJ, Vakalopoulou M et al (2018) A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 19(9):1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3

    Article  CAS  PubMed  Google Scholar 

  28. Zhou C, Duan X, Zhang X et al (2016) Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Eur Radiol 26(9):3086–3093. https://doi.org/10.1007/s00330-015-4172-7

    Article  PubMed  Google Scholar 

  29. Zhang L, Kang L, Li G et al (2020) Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol Med 125(5):465–473. https://doi.org/10.1007/s11547-020-01138-6

    Article  PubMed  Google Scholar 

  30. Xue C, Yuan J, Lo GG et al (2021) Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 11(10):4431–4460. https://doi.org/10.21037/qims-21-86

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  32. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77(21):e104–e107. https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A (2016) Approaches to regularized regression—a comparison between Gradient Boosting and the Lasso. Methods Inf Med 55(5):422–430. https://doi.org/10.3414/ME16-01-0033

    Article  PubMed  Google Scholar 

  34. Nattino G, Pennell ML, Lemeshow S (2020) Assessing the goodness of fit of logistic regression models in large samples: a modification of the Hosmer–Lemeshow test. Biometrics 76(2):549–560. https://doi.org/10.1111/biom.13249

    Article  PubMed  Google Scholar 

  35. Vassos N, Jakob J, Kähler G et al (2021) Preservation of organ function in locally advanced non-metastatic gastrointestinal stromal tumors (GIST) of the stomach by neoadjuvant imatinib therapy. Cancers (Basel) 13(4):586. https://doi.org/10.3390/cancers13040586

    Article  CAS  PubMed  Google Scholar 

  36. Marqueen KE, Moshier E, Bucksteinr M et al (2021) Neoadjuvant therapy for gastrointestinal stromal tumors: a propensity score-weighted analysis. Int J Cancer 149(1):177–185. https://doi.org/10.1002/ijc.33536

    Article  CAS  PubMed  Google Scholar 

  37. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762. https://doi.org/10.1038/nrclinonc.2017.141

    Article  PubMed  Google Scholar 

  38. Thawani R, McLane M, Beig N et al (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41. https://doi.org/10.1016/j.lungcan.2017.10.015

    Article  PubMed  Google Scholar 

  39. Jiang Y, Wang W, Chen C et al (2019) Radiomics signature on computed tomography imaging: association with lymph node metastasis in patients with gastric cancer. Front Oncol 9:340. https://doi.org/10.3389/fonc.2019.00340

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao Y, Feng M, Wang M et al (2021) CT radiomics for the preoperative prediction of Ki67 index in gastrointestinal stromal tumors: a multi-center study. Front Oncol 11:689136. https://doi.org/10.3389/fonc.2021.689136

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang F-H, Zheng H-L, Li J-T et al (2022) Prediction of recurrence-free survival and adjuvant therapy benefit in patients with gastrointestinal stromal tumors based on radiomics features. Radiol Med 127(10):1085–1097. https://doi.org/10.1007/s11547-022-01549-7

    Article  PubMed  Google Scholar 

  42. Palatresi D, Fedeli F, Danti G et al (2022) Correlation of CT radiomic features for GISTs with pathological classification and molecular subtypes: preliminary and monocentric experience. Radiol Med 127(2):117–128. https://doi.org/10.1007/s11547-021-01446-5

    Article  PubMed  Google Scholar 

  43. Wang C, Li H, Jiaerken Y et al (2019) Building CT radiomics-based models for preoperatively predicting malignant potential and mitotic count of gastrointestinal stromal tumors. Transl Oncol 12(9):1229–1236. https://doi.org/10.1016/j.tranon.2019.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kang B, Yuan X, Wang H et al (2021) Preoperative CT-based deep learning model for predicting risk stratification in patients with gastrointestinal stromal tumors. Front Oncol 11:750875. https://doi.org/10.3389/fonc.2021.750875

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Wang Y, Ren J et al (2022) Malignancy risk of gastrointestinal stromal tumors evaluated with noninvasive radiomics: a multi-center study. Front Oncol 12:9643. https://doi.org/10.3389/fonc.2022.966743

    Article  Google Scholar 

  46. Wang M, Feng Z, Zhou L et al (2021) Computed-tomography-based radiomics model for predicting the malignant potential of gastrointestinal stromal tumors preoperatively: a multi-classifier and multicenter study. Front Oncol 11:5847. https://doi.org/10.3389/fonc.2021.582847

    Article  Google Scholar 

Download references

Acknowledgements

We thank all patients, their families and all investigators involved in the present study. I would also like to thank my tutor, Professor Jian-Wei Xie.

Funding

This research was funded by Fujian Province medical “Innovation Double High” construction fund ([2021] No. 76).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by J-XL, F-HW and Z-KW. The first draft of the manuscript was written by J-XL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chang-Ming Huang or Jian-Wei Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data statement

The authors declare that they had full access to all of the data in this study and the authors take complete responsibility for the integrity of the data and the accuracy of the data analysis.

Institutional review board statement

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the institutional review board.

Informed consent

This study is a retrospective study, and patients' informed consent was waived with the approval of the institutional review board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7452 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JX., Wang, FH., Wang, ZK. et al. Prediction of the mitotic index and preoperative risk stratification of gastrointestinal stromal tumors with CT radiomic features. Radiol med 128, 644–654 (2023). https://doi.org/10.1007/s11547-023-01637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01637-2

Keywords

Navigation