Skip to main content
Log in

A revisiting of “the hallmarks of aging” in domestic dogs: current status of the literature

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

A progressive decline in biological function and fitness is, generally, how aging is defined. However, in 2013, a description on the “hallmarks of aging” in mammals was published, and within it, it described biological processes that are known to alter the aging phenotype. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication (inflammation), and changes within the microbiome. This mini-review provides a detailed account of the progress on each of these hallmarks of aging in the domestic dog within the last 5 years. Additionally, when there are gaps in the literature between other mammalian species and dogs, I highlight the aging biomarkers that may be missing for dogs as aging models. I also argue for the importance of dog aging studies to include several breeds of dogs at differing ages and for age corrections for breeds with differing mean lifespans throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

There is no raw data included within this manuscript.

Materials availability

For any inquiries, please email ajimenez@colgate.edu.

Abbreviations

CNV:

Copy number variant

PBMC:

Peripheral blood mononuclear cell or leukocyte

SIRT1:

Sirtuin 1

IGF-1:

Insulin growth factor-1

H4K16ac, H4K20me3, H3K4me3, H3K9me, H3K27me3:

Different types of histone modifications

HSP:

Heat shock protein

Hsp-70:

Heat shock protein 70

βA:

Beta amyloid

Hsc70:

Heat shock cognate 70

HSF-1:

Heat shock factor 1

GH:

Growth hormone

CR:

Calorie restriction/restricted

ROS:

Reactive oxygen species

OS:

Oxidative stress

GPx:

Glutathione peroxidase

SOD:

Super oxide dismutase

CAT:

Catalase

8-OHdg:

A type of oxidative DNA damage

GSH:

Reduced glutathione

AGE:

Advanced glycation end-product

PGC1-α:

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha

ETC:

Electron transport chain

γH2AX:

DNA damage marker

SCs:

Satellite cells

TNF-α:

Tumor necrosis factor α

IL-1β:

Interleukins(IL)-1β

IL-6:

Interleukins(IL)-6

LPS:

Lipopolysaccharide

sj-TREC:

Signal joint T cell receptor excision circle

References

  1. Alexander JE, Colyer A, Haydock RM, Hayek MG, Park J. Understanding how dogs age: longitudinal analysis of markers of inflammation, immune function, and oxidative stress. J Gerontol: Ser A. 2018;73(6):720–8.

    Article  CAS  Google Scholar 

  2. Allen RE, Boxhorn LK. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol. 1989;138(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal S, Baran C, Piesco NP, Quintero JC, Langkamp HH, Johns LP, Chandra CS. Synthesis of proinflammatory cytokines by human gingival fibroblasts in response to lipopolysaccharides and interleukin-1β. J Periodontal Res. 1995;30(6):382–9.

    Article  CAS  PubMed  Google Scholar 

  4. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120(4):435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014.

  6. Banlaki Z, Cimarelli G, Viranyi Z, Kubinyi E, Sasvari-Szekely M, Ronai Z. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. Mol Genet Genomics. 2017;292:685–97.

    Article  CAS  PubMed  Google Scholar 

  7. Baserga R, Peruzzi F, Reiss K. The IGF-1 receptor in cancer biology. Int J Cancer. 2003;107(6):873–7.

    Article  CAS  PubMed  Google Scholar 

  8. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013;2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baynes JW. From life to death–the struggle between chemistryand biology during aging: the Maillard reaction as an amplifier of genomic damage. Biogerontology. 2000;1:235–46.

    Article  CAS  PubMed  Google Scholar 

  10. Baynes JW. The role of AGEs in aging: causation or correlation. Exp Gerontol. 2001;36(9):1527–37.

    Article  CAS  PubMed  Google Scholar 

  11. Beatty A, Rubin AM, Wada H, Heidinger B, Hood WR, Schwartz TS. Postnatal expression of IGF2 is the norm in amniote vertebrates. Proc R Soc B. 2022;289(1969):20212278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beckmann M, Enot DP, Overy DP, Scott IM, Jones PG, Allaway D, Draper J. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br J Nutr. 2010;103(8):1127–38.

    Article  CAS  PubMed  Google Scholar 

  13. Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the environment. Exp Gerontol. 2018;105:10–8.

    Article  CAS  PubMed  Google Scholar 

  14. Berglund J, Nevalainen EM, Molin AM, Perloski M, LUPA Consortium marilou, André C, ... Webster MT. Novel origins of copy number variation in the dog genome. Genome Biol. 2012;13:1–18.

  15. Bertolo A, Steffen F, Malonzo-Marty C, Stoyanov J. Canine mesenchymal stem cell potential and the importance of dog breed: implication for cell-based therapies. Cell Transplant. 2015;24(10):1969–80.

    Article  PubMed  Google Scholar 

  16. Blount DG, Heaton PR, Pritchard DI. Changes to levels of DNA damage and apoptotic resistance in peripheral blood mononuclear cells and plasma antioxidant potential with age in Labrador retriever dogs. J Nutr. 2004;134(8):2120S-2123S.

    Article  CAS  PubMed  Google Scholar 

  17. Blount DG, Pritchard DI, Heaton PR. Age-related alterations to immune parameters in Labrador retriever dogs. Vet Immunol Immunopathol. 2005;108(3–4):399–407.

    Article  CAS  PubMed  Google Scholar 

  18. Borràs D, Ferrer I, Pumarola M. Age-related changes in the brain of the dog. Vet Pathol. 1999;36(3):202–11.

    Article  PubMed  Google Scholar 

  19. Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021;22(5–6):289–303.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brookes PS, Jimenez AG. Metabolomics of aging in primary fibroblasts from small and large breed dogs. GeroScience. 2021;43(4):1683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chambers JK, Mutsuga M, Uchida K, Nakayama H. Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid. 2011;18(2):63–71.

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, ... Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337–352.

  23. Chung HY, Sung B, Jung KJ, Zou Y, Yu BP. The molecular inflammatory process in aging. Antioxid Redox Signal. 2006;8(3–4):572–81.

    Article  CAS  PubMed  Google Scholar 

  24. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, ... Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8(1):18–30.

  25. Cohen AA. Aging across the tree of life: the importance of a comparative perspective for the use of animal models in aging. Biochim et Biophys Acta (BBA)-Mol Basis Dis. 2018;1864(9):2680–9.

    Article  CAS  Google Scholar 

  26. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, ... Hurles ME. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–712.

  27. Cossarizza A, Ortolani C, Monti D, Franceschi C. Cytometric analysis of immunosenescence. Cytom: J Int Soc Anal Cytol. 1997;27(4):297–313.

    Article  CAS  Google Scholar 

  28. Cramer AA, Prasad V, Eftestøl E, Song T, Hansson KA, Dugdale HF, ... Millay DP. Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun. 2020;11(1):6287.

  29. Dantzer B, Swanson EM. Mediation of vertebrate life histories via insulin-like growth factor-1. Biol Rev. 2012;87(2):414–29.

    Article  PubMed  Google Scholar 

  30. da Silva J, Cross BJ. Dog life spans and the evolution of aging. Am Nat. 2023;201(6):E140–52.

    Article  PubMed  Google Scholar 

  31. Davizon-Castillo P, McMahon B, Aguila S, Bark D, Ashworth K, Allawzi A, ... Di Paola J. TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood, J Am Soc Hematol. 2019;134(9):727–740.

  32. Day MJ. Ageing, immunosenescence and inflammageing in the dog and cat. J Comp Pathol. 2010;142:S60–9.

    Article  CAS  PubMed  Google Scholar 

  33. Deschamps C, Humbert D, Zentek J, Denis S, Priymenko N, Apper E, Blanquet-Diot S. From Chihuahua to Saint-Bernard: how did digestion and microbiota evolve with dog sizes. Int J Biol Sci. 2022;18(13):5086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology. 2011;26(3):192–205.

    Article  CAS  PubMed  Google Scholar 

  35. Dowling DK, Simmons LW. Reactive oxygen species as universal constraints in life-history evolution. Proc Royal Soc B: Biol Sci. 2009;276(1663):1737–45.

    Article  CAS  Google Scholar 

  36. Eigenmann JE, Amador A, Patterson DF. Insulin-like growth factor I levels in proportionate dogs, chondrodystrophic dogs and in giant dogs. Euro J Endocrinol. 1988;118(1):105–8.

    Article  CAS  Google Scholar 

  37. Favier RP, Mol JA, Kooistra HS, Rijnberk A. Large body size in the dog is associated with transient GH excess at a young age. J Endocrinol. 2001;170(2):479–84.

    Article  CAS  PubMed  Google Scholar 

  38. Fick LJ, Fick GH, Li Z, Cao E, Bao B, Heffelfinger D, ... Riabowol K. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530–1536.

  39. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

    Article  CAS  PubMed  Google Scholar 

  40. Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, ... Hughes DJ. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1381–1390.

  41. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328(5976):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Forcina L, Franceschi C, Musarò A. The hormetic and hermetic role of IL-6. Ageing Res Rev. 2022;101697.

  43. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A: Biomed Sci Med Sci. 2014;69(Suppl 1):S4–9.

    Article  Google Scholar 

  44. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54.

    Article  CAS  PubMed  Google Scholar 

  45. Forcina L, Miano C, Pelosi L, Musarò A. An overview about the biology of skeletal muscle satellite cells. Curr Genomics. 2019;20(1):24–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujiwara M, Yonezawa T, Arai T, Yamamoto I, Ohtsuka H. Alterations with age in peripheral blood lymphocyte subpopulations and cytokine synthesis in beagles. Vet Med Res Rep. 2012;3:79–84.

    Google Scholar 

  47. Gabriel P, Cakman I, Rink L. Overproduction of monokines by leukocytes after stimulation with lipopolysaccharide in the elderly. Exp Gerontol. 2002;37(2–3):235–47.

    Article  CAS  PubMed  Google Scholar 

  48. Galis F, Van Der Sluijs I, Van Dooren TJ, Metz JA, Nussbaumer M. Do large dogs die young? J Exp Zool B Mol Dev Evol. 2007;308(2):119–26.

    Article  PubMed  Google Scholar 

  49. Greeley EH, Kealy RD, Ballam JM, Lawler DF, Segre M. The influence of age on the canine immune system. Vet Immunol Immunopathol. 1996;55(1–3):1–10.

    Article  CAS  PubMed  Google Scholar 

  50. Greeley EH, Ballam JM, Harrison JM, Kealy RD, Lawler DF, Segre M. The influence of age and gender on the immune system: a longitudinal study in Labrador retriever dogs. Vet Immunol Immunopathol. 2001;82(1–2):57–71.

    Article  CAS  PubMed  Google Scholar 

  51. Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. Age. 2011;33:475–83.

    Article  CAS  PubMed  Google Scholar 

  52. Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–21.

    Article  CAS  PubMed  Google Scholar 

  53. Hall JA, Chinn RM, Vorachek WR, Gorman ME, Jewell DE. Aged beagle dogs have decreased neutrophil phagocytosis and neutrophil-related gene expression compared to younger dogs. Vet Immunol Immunopathol. 2010;137(1–2):130–5.

    Article  CAS  PubMed  Google Scholar 

  54. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(5):715S-725S.

    Article  CAS  PubMed  Google Scholar 

  55. Hardwick LJ, Kortum AJ, Constantino-Casas F, Watson PJ. Breed-related expression patterns of Ki67, γH2AX, and p21 during ageing in the canine liver. Vet Res Commun. 2021;45:21–30.

    Article  PubMed  Google Scholar 

  56. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–32.

    Article  CAS  PubMed  Google Scholar 

  57. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25(3):585–621.

    Article  CAS  PubMed  Google Scholar 

  58. Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, Cotman CW. Oxidative damage increases with age in a canine model of human brain aging. J Neurochem. 2002;82(2):375–81.

    Article  CAS  PubMed  Google Scholar 

  59. Heaton PR, Blount DG, Devlin P, Koelsch S, Mann SJ, Smith BH, ... Harper EJ. Assessing age-related changes in peripheral blood leukocyte phenotypes in Labrador retriever dogs using flow cytometry. J Nutr. 2002;132(6):1655S-1657S.

  60. Hoffman JM, Kiklevich JV, Austad M, Tran V, Jones DP, Royal A, ... Austad SN. Tryptophan metabolism is differently regulated between large and small dogs. GeroScience. 2020;42:881–896.

  61. Hoffman JM, Kiklevich JV, Klavins K, Valencak TG, Austad SN. Alterations of lipid metabolism with age and weight in companion dogs. J Gerontol: Series A. 2021;76(3):400–5.

    Article  CAS  Google Scholar 

  62. Holder A, Mella S, Palmer DB, Aspinall R, Catchpole B. An age-associated decline in thymic output differs in dog breeds according to their longevity. PLoS One. 2016;11(11):e0165968.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, Lim AR, ... Ostrander EA. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci. 2022;119(21):e2120887119.

  64. Hou C, Metcalfe NB, Salin K. Is mitochondrial reactive oxygen species production proportional to oxygen consumption? A theoretical consideration. BioEssays. 2021;2000165.

  65. Huang J, Chen T, Liu X, Jiang J, Li J, Li D, ... Pei G. More synergetic cooperation of Yamanaka factors in induced pluripotent stem cells than in embryonic stem cells. Cell Res. 2009;19(10):1127–1138.

  66. Hughes SM, Schiaffino S. Control of muscle fibre size: a crucial factor in ageing. Acta Physiol Scand. 1999;167(4):307–12.

    Article  CAS  PubMed  Google Scholar 

  67. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev. 2007;87(4):1175–213.

    Article  CAS  PubMed  Google Scholar 

  68. Jimenez AG. Physiological underpinnings in life-history trade-offs in man’s most popular selection experiment: the dog. J Comp Physiol B. 2016;186:813–27.

    Article  PubMed  Google Scholar 

  69. Jimenez AG, Winward J, Beattie U, Cipolli W. Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. PLoS One. 2018;13(4):e0195832.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jimenez AG, Downs CJ. Untangling life span and body mass discrepancies in canids: phylogenetic comparison of oxidative stress in blood from domestic dogs and wild canids. Am J Physiol-Regul, Integr Comp Physiol. 2020.

  71. Jimenez AG, Winward JD, Walsh KE, Champagne AM. Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs. J Exp Biol. 2020;223(12):jeb221804.

    Article  PubMed  Google Scholar 

  72. Jimenez AG. The physiological conundrum that is the domestic dog. Integr Comp Biol. 2021;61(1):140–53.

    Article  CAS  PubMed  Google Scholar 

  73. Jimenez AG. Plasma concentration of advanced glycation end-products from wild canids and domestic dogs does not change with age or across body masses. Front Vet Sci. 2021;8:637132.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jimenez AG, Lalwani S, Cipolli W. Effects of metformin, rapamycin, and resveratrol on cellular metabolism of canine primary fibroblast cells isolated from large and small breeds as they age. GeroScience. 2021a;1–14.

  75. Jimenez AG, Downs CJ, Lalwani S, Cipolli W. Cellular metabolism and IL-6 concentrations during stimulated inflammation in primary fibroblasts from small and large dog breeds as they age. J Exp Biol. 2021b;224(9).

  76. Jimenez AG, Paul K, Benson M, Lalwani S, Cipolli W. Cellular metabolic pathways of aging in dogs: could p53 and SIRT1 be at play? In review. n.d.

  77. Jiménez AG. Inflammaging in domestic dogs: basal level concentrations of IL-6, IL-1β, and TNF-α in serum of healthy dogs of different body sizes and ages. Biogerontology. 2023;24:593–602.

    Article  PubMed  Google Scholar 

  78. Jimenez AG, Harper J. The use of primary fibroblasts cells to tackle comparative physiology questions: a historical and current perspective. Am J Physiol-Regul, Integr Comp Physiol. 2023;325:R45–54.

    CAS  PubMed  Google Scholar 

  79. Kain V, Prabhu SD, Halade GV. Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol. 2014;109(6):1–17.

    Article  CAS  Google Scholar 

  80. Kim MJ, Oh HJ, Setyawan EMN, Choi YB, Lee SH, Lee BC. Vorinostat induces cellular senescence in fibroblasts derived from young and aged dogs. J Vet Clin. 2017;34(1):27–33.

    Article  Google Scholar 

  81. Koch I, Clark MM, Thompson MJ, Deere‐Machemer KA, Wang J, Duarte L, ... Vonholdt BM. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol. 2016;25(8):1838–1855.

  82. Kortum AJ, Cloup EA, Williams TL, Constantino-Casas F, Watson PJ. Hepatocyte expression and prognostic importance of senescence marker p21 in liver histopathology samples from dogs with chronic hepatitis. J Vet Intern Med. 2018;32(5):1629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kovács T, Szinyákovics J, Billes V, Murányi G, Varga VB, Bjelik A, ... Vellai T. A conserved MTMR lipid phosphatase increasingly suppresses autophagy in brain neurons during aging. Sci Rep. 2022;12(1):21817.

  84. Kraus C, Pavard S, Promislow DE. The size–life span trade-off decomposed: why large dogs die young. Am Nat. 2013;181(4):492–505.

    Article  PubMed  Google Scholar 

  85. Kraus C, Snyder-Mackler N, Promislow DE. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience. 2023;45(2):627–43.

    Article  PubMed  Google Scholar 

  86. Kubinyi E, Bel Rhali S, Sándor S, Szabó A, Felföldi T. Gut microbiome composition is associated with age and memory performance in pet dogs. Animals. 2020;10(9):1488.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee AT, Cerami A. Role of glycation in aging. Ann N Y Acad Sci. 1992;663:63–70.

    Article  CAS  PubMed  Google Scholar 

  88. Lee KA. Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol. 2006;46(6):1000–15.

    Article  CAS  PubMed  Google Scholar 

  89. Lee SH, Park S, Kim HS, Jung BH. Metabolomic approaches to the normal aging process. Metabolomics. 2014;10:1268–92.

    Article  CAS  Google Scholar 

  90. Lee SH, Kim JW, Lee BC, Oh HJ. Age-specific variations in hematological and biochemical parameters in middle-and large-sized of dogs. J Vet Sci. 2020;21(1).

  91. Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA, ... McBurney MW. The Sirt1 deacetylase modulates the insulin-like growth factor signaling. 2005.

  92. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr DiabRep. 2013;13(3):435–44.

    CAS  Google Scholar 

  93. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.

    Article  CAS  PubMed  Google Scholar 

  95. Madelaire C, Klink A, Israelsen WJ, Hindle AG. Fibroblasts as an experimental model system for the study of comparative physiology. Comp Biochem Physiol Part B: Biochem Mol Biol. 2022;110735.

  96. McKevitt TP, Nasir L, Devlin P, Argyle DJ. Telomere lengths in dogs decrease with increasing donor age. J Nutr. 2002;132(6):1604S-1606S.

    Article  CAS  PubMed  Google Scholar 

  97. Merz SE, Kershaw O, Petrick A, Gruber AD, Klopfleisch R, Breithaupt A. Tumour, but not age-associated, increase of senescence markers γH2AX and p21 in the canine eye. J Comp Pathol. 2019;173:41–8.

    Article  CAS  PubMed  Google Scholar 

  98. Middleton RP, Lacroix S, Scott-Boyer MP, Dordevic N, Kennedy AD, Slusky AR, ... Kaput J. Metabolic differences between dogs of different body sizes. J Nutr Metab. 2017.

  99. Michell AR. Longevit of British breeds of dog and its relationships with-sex, size, cardiovascular variables and disease. Vet Rec. 1999;145(22):625–9.

    Article  CAS  PubMed  Google Scholar 

  100. Mishur RJ, Rea SL. Applications of mass spectrometry to metabolomics and metabonomics: detection of biomarkers of aging and of age-related diseases. Mass Spectr Rev. 2012;31(1):70–95.

    Article  CAS  Google Scholar 

  101. Mohammadzadeh A, Mirza-Aghazadeh-Attari M, Hallaj S, Saei AA, Alivand MR, Valizadeh A, ... Majidinia M. Crosstalk between P53 and DNA damage response in ageing. DNA Repair. 2019;80:8–15.

  102. Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxidative Med Cell Longev. 2019.

  103. Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett. 2009;12(1):75–92.

    Article  PubMed  Google Scholar 

  104. Nasir L, Devlin P, Mckevitt T, Rutteman G, Argyle DJ. Telomere lengths and telomerase activity in dog tissues: a potential model system to study human telomere and telomerase biology. Neoplasia. 2001;3(4):351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nešić S, Kukolj V, Marinković D, Vučićević I, Jovanović M. Histological and immunohistochemical characteristics of cerebral amyloid angiopathy in elderly dogs. Vet Q. 2017;37(1):1–7.

    Article  PubMed  Google Scholar 

  106. Nicholatos JW, Robinette TM, Tata SV, Yordy JD, Francisco AB, Platov M, ... Libert S. Cellular energetics and mitochondrial uncoupling in canine aging. Geroscience. 2019;41:229–242.

  107. Ong AL, Ramasamy TS. Role of sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018;43:64–80.

    Article  CAS  PubMed  Google Scholar 

  108. Pagano TB, Wojcik S, Costagliola A, De Biase D, Lovino S, Iovane V, ... Paciello O. Age related skeletal muscle atrophy and upregulation of autophagy in dogs. Vet J. 2015;206(1):54–60.

  109. Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol. 2011;193(5):809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Park S, Mathison BD, Hayek MG, Zhang J, Reinhart GA, Chew BP. Astaxanthin modulates age-associated mitochondrial dysfunction in healthy dogs1. J Anim Sci. 2013;91(1):268–75.

    Article  CAS  PubMed  Google Scholar 

  111. Partridge L, Gems D. Mechanisms of aging: public or private? Nat Rev Genet. 2002;3(3):165.

    Article  CAS  PubMed  Google Scholar 

  112. Pereira M, Valério-Bolas A, Saraiva-Marques C, Alexandre-Pires G, Pereira da Fonseca I, Santos-Gomes G. Development of dog immune system: from in uterus to elderly. Vet Sci. 2019;6(4):83.

    PubMed  PubMed Central  Google Scholar 

  113. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  CAS  PubMed  Google Scholar 

  114. Puurunen J, Ottka C, Salonen M, Niskanen JE, Lohi H. Age, breed, sex and diet influence serum metabolite profiles of 2000 pet dogs. Royal Soc Open Sci. 2022;9(2):211642.

    Article  CAS  Google Scholar 

  115. Reddy KE, Kim HR, Jeong JY, So KM, Lee S, Ji SY, ... Kim M. Impact of breed on the fecal microbiome of dogs under the same dietary condition. 2019.

  116. Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res. 2013;12(7):3117–27.

    Article  CAS  PubMed  Google Scholar 

  117. Richter T, von Zglinicki T. A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol. 2007;42(11):1039–42.

    Article  CAS  PubMed  Google Scholar 

  118. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, ... Collado MC. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26(1):26050.

  119. Romanucci M, Della Salda L. Oxidative stress and protein quality control systems in the aged canine brain as a model for human neurodegenerative disorders. Oxidative Med Cell Longev. 2015.

  120. Ruple A, MacLean E, Snyder-Mackler N, Creevy KE, Promislow D. Dog models of aging. Annu Rev Anim Biosci. 2022;10:419–39.

    Article  PubMed  Google Scholar 

  121. Sándor S, Kubinyi E. Genetic pathways of aging and their relevance in the dog as a natural model of human aging. Front Genet. 2019;948.

  122. Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007;26(37):5489–504.

    Article  CAS  PubMed  Google Scholar 

  123. Scarsella E, Sandri M, Monego SD, Licastro D, Stefanon B. Blood microbiome: a new marker of gut microbial population in dogs? Vet Sci. 2020;7(4):198.

    PubMed  PubMed Central  Google Scholar 

  124. Schmauck-Medina T, Molière A, Lautrup S, Zhang J, Chlopicki S, Madsen HB, ... Fang EF. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany NY). 2022;14(16):6829.

  125. Schwartz SM, Urfer SR, White M, Megquier K, Shrager S, Dog Aging Project Consortium, Ruple A. Lifetime prevalence of malignant and benign tumours in companion dogs: cross-sectional analysis of dog aging project baseline survey. Vet Comp Oncol. 2022;20(4):797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009;30(7):374–81.

    Article  CAS  PubMed  Google Scholar 

  127. Serres-Armero A, Davis BW, Povolotskaya IS, Morcillo-Suarez C, Plassais J, Juan D, ... Marques-Bonet T. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res. 2021;31(5):762–774.

  128. Sohal RS, Orr WC. The redox stress hypothesis of aging. Free Radical Biol Med. 2012;52(3):539–55.

    Article  CAS  Google Scholar 

  129. Strasser A, Teltscher A, May B, Sanders C, Niedermüller H. Age-associated changes in the immune system of German shepherd dogs. J Vet Med Ser A. 2000;47(3):181–92.

    Article  CAS  Google Scholar 

  130. Sung KC, Lee MY, Kim YH, Huh JH, Kim JY, Wild SH, Byrne CD. Obesity and incidence of diabetes: Effect of absence of metabolic syndrome, insulin resistance, inflammation and fatty liver. Atherosclerosis. 2018;275:50–7.

    Article  CAS  PubMed  Google Scholar 

  131. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, ... Ostrander EA. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316(5821):112–115.

  132. Tabeta K, Yamazaki K, Akashi S, Miyake K, Kumada H, Umemoto T, Yoshie H. Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun. 2000;68(6):3731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thompson MJ, Horvath S, Pellegrini M. An epigenetic aging clock for dogs and wolves. Aging (Albany NY). 2017;9(3):1055.

    Article  CAS  PubMed  Google Scholar 

  134. Tian X, Seluanov A, Gorbunova V. Molecular mechanisms determining lifespan in short-and long-lived species. Trends Endocrinol Metab. 2017;28(10):722–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Todorova I, Simeonova G, Kyuchukova D, Dinev D, Gadjeva V. Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comp Clin Pathol. 2005;13:190–4.

    Article  CAS  Google Scholar 

  136. Tomsič K, Seliškar A, Lukanc B, Nemec Svete A. Plasma total antioxidant capacity and activities of blood glutathione peroxidase and superoxide dismutase determined in healthy dogs by using commercially available kits. Acta Vet. 2016;66(4):534–48.

    Article  Google Scholar 

  137. Urfer SR, Darvas M, Czeibert K, Sándor S, Promislow DE, Creevy KE, ... Kaeberlein M. Canine cognitive dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. GeroScience. 2021;43(5):2379–2386.

  138. Viant MR, Ludwig C, Rhodes S, Günther UL, Allaway D. Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics. 2007;3:453–63.

    Article  CAS  Google Scholar 

  139. Villaescusa A, García-Sancho M, Rodríguez-Franco F, Sainz Á. Early-life longitudinal survey of peripheral blood lymphocyte subsets in beagle dogs. Vet Immunol Immunopathol. 2012;149(1–2):126–31.

    Article  PubMed  Google Scholar 

  140. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res. 2007;6(5):1846–54.

    Article  CAS  PubMed  Google Scholar 

  142. Wang T, Ma J, Hogan AN, Fong S, Licon K, Tsui B, ... Ideker T. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 2020;11(2):176–185.

  143. Wikby, A., Nilsson, B. O., Forsey, R., Thompson, J., Strindhall, J., Löfgren, S., ... & Johansson, B. (2006). The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev. 127(8):695–704.

  144. Wynkoop MR, Lalwani S, Cipolli W, Jimenez AG. Scaling with body mass and age in glycolytic enzymes of domestic dogs. Vet Res Commun. 2023;47(1):39–50.

    Article  PubMed  Google Scholar 

  145. Xia, S., Zhang, X., Zheng, S., Khanabdali, R., Kalionis, B., Wu, J., ... & Tai, X. (2016). An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016.

  146. Yoshimura K, Matsuu A, Sasaki K, Momoi Y. Detection of sirtuin-1 protein expression in peripheral blood leukocytes in dogs. J Vet Med Sci. 2018;80(7):1068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. You I, Kim MJ. Comparison of gut microbiota of 96 healthy dogs by individual traits: breed, age, and body condition score. Animals. 2021;11(8):2432.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zimmerman LM, Bowden RM, Vogel LA. A vertebrate cytokine primer for eco-immunologists. Funct Ecol. 2014;28(5):1061–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AGJ reviewed the literature and wrote the manuscript.

Corresponding author

Correspondence to Ana Gabriela Jiménez.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, A.G. A revisiting of “the hallmarks of aging” in domestic dogs: current status of the literature. GeroScience 46, 241–255 (2024). https://doi.org/10.1007/s11357-023-00911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00911-5

Keywords

Navigation