Skip to main content

Advertisement

Log in

The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Trimethylamine N-oxide (TMAO) is an intestinal uremic toxin molecule mainly excreted by the kidney. Therefore, the plasma TMAO concentration is significantly increased in chronic kidney disease (CKD) patients, and plasma TMAO can be cleared by dialysis. Furthermore, TMAO damage the kidney mainly through three mechanisms: oxidative stress, inflammation and endoplasmic reticulum stress. Clinical experiments have indicated that higher TMAO levels are strongly related to the elevated incidence and mortality of cardiovascular (CV) events in CKD patients. Moreover, experimental data have shown that high levels of TMAO directly aggravate atherosclerosis, thrombosis and enhance myocardial contractility, resulting in myocardial ischemia and stroke. Specially, there are currently four potential ways to reduce blood TMAO concentration or block the effect of TMAO, including reducing the intake of trimethylamine (TMA) precursors in the diet, regulating the intestinal flora to reduce TMA production, interrupting the role of flavin-dependent monooxygenase isoforms (FMOs) to reduce the generation of TMAO, and blocking the TMAO receptor protein kinase R-like endoplasmic reticulum kinase (PERK). We hope that more clinical studies and clinicians will focus on clinical treatment to reduce the concentration of TMAO and alleviate renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data used and/or analyzed in the current study are available upon reasonable request to the first author.

References

  1. Glassock RJ, Warnock DG, Delanaye P (2017) The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol 13(2):104–114

    CAS  PubMed  Google Scholar 

  2. Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11(7):e0158765

    PubMed  PubMed Central  Google Scholar 

  3. Lv JC, Zhang LX (2019) Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol 1165:3–15

    CAS  PubMed  Google Scholar 

  4. Zhang L, Wang F, Wang L et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379(9818):815–822

    PubMed  Google Scholar 

  5. Jun M, Lv J, Perkovic V et al (2011) Managing cardiovascular risk in people with chronic kidney disease: a review of the evidence from randomized controlled trials. Ther Adv Chronic Dis 2(4):265–278

    PubMed  PubMed Central  Google Scholar 

  6. Mair RD, Sirich TL, Meyer TW (2018) Uremic toxin clearance and cardiovascular toxicities. Toxins 10(6):226

    PubMed  PubMed Central  Google Scholar 

  7. Koppe L, Fouque D, Soulage CO (2018) The role of gut microbiota and diet on uremic retention solutes production in the context of chronic kidney disease. Toxins 10(4):155

    PubMed  PubMed Central  Google Scholar 

  8. Marques FZ, Nelson E, Chu PY et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10):964–977

    CAS  PubMed  Google Scholar 

  9. Rosshart SP, Vassallo BG, Angeletti D et al (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171(5):1015–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vatanen T, Franzosa EA, Schwager R et al (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562(7728):589–594

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cryan JF, O’Riordan KJ, Cowan CSM et al (2019) The Microbiota-Gut-Brain Axis. Physiol Rev 99(4):1877–2013

    CAS  PubMed  Google Scholar 

  12. Yang T, Richards EM, Pepine CJ et al (2018) The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol 14(7):442–456

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xing J, Ying Y, Mao C et al (2018) Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun 9(1):2020

    PubMed  PubMed Central  Google Scholar 

  14. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Evenepoel P, Poesen R, Meijers B (2017) The gut-kidney axis. Pediatr Nephrol 32(11):2005–2014

    PubMed  Google Scholar 

  16. Lekawanvijit S (2018) Cardiotoxicity of uremic toxins: a driver of cardiorenal syndrome. Toxins 10(9):352

    PubMed  PubMed Central  Google Scholar 

  17. Sun G, Yin Z, Liu N et al (2017) Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 493(2):964–970

    CAS  PubMed  Google Scholar 

  18. Tang WH, Wang Z, Kennedy DJ et al (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116(3):448–455

    CAS  PubMed  Google Scholar 

  19. Lang DH, Yeung CK, Peter RM et al (1998) Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem Pharmacol 56(8):1005–1012

    CAS  PubMed  Google Scholar 

  20. Bennett BJ, de Aguiar Vallim TQ, Wang Z et al (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17(1):49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Seibel BA, Walsh PJ (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J Exp Biol 205(Pt 3):297–306

    CAS  PubMed  Google Scholar 

  22. Zeisel SH, Warrier M (2017) Trimethylamine N-Oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 37:157–181

    CAS  PubMed  Google Scholar 

  23. Janeiro MH, Ramirez MJ, Milagro FI et al (2018) Implication of Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new Therapeutic target. Nutrients 10(10):1398

    PubMed  PubMed Central  Google Scholar 

  24. Spector R (2016) New insight into the dietary cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther 358(1):103–108

    CAS  PubMed  Google Scholar 

  25. Rath S, Heidrich B, Pieper DH et al (2017) Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 5(1):54

    PubMed  PubMed Central  Google Scholar 

  26. Romano KA, Vivas EI, Amador-Noguez D et al (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 6(2):e02481

    PubMed  PubMed Central  Google Scholar 

  27. Fennema D, Phillips IR, Shephard EA (2016) Trimethylamine and Trimethylamine N-Oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44(11):1839–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Waiz M, Mitchell SC, Idle JR et al (1987) The metabolism of 14C-labelled trimethylamine and its N-oxide in man. Xenobiotica 17(5):551–558

    CAS  PubMed  Google Scholar 

  29. Hai X, Landeras V, Dobre MA et al (2015) Mechanism of prominent Trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLoS ONE 10(12):e0143731

    PubMed  PubMed Central  Google Scholar 

  30. Pelletier CC, Croyal M, Ene L et al (2019) Elevation of Trimethylamine-N-oxide in chronic kidney disease: contribution of decreased glomerular filtration rate. Toxins (Basel) 11(11):635

    CAS  PubMed  Google Scholar 

  31. Athawale MV, Dordick JS, Garde S (2005) Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys J 89(2):858–866

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(Pt 15):2819–2830

    CAS  PubMed  Google Scholar 

  33. Cho SS, Reddy G, Straub JE et al (2011) Entropic stabilization of proteins by TMAO. J Phys Chem B 115(45):13401–13407

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Strom AR, Olafsen JA, Larsen H (1979) Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria. J Gen Microbiol 112(2):315–320

    CAS  PubMed  Google Scholar 

  36. Kuhn T, Rohrmann S, Sookthai D et al (2017) Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med 55(2):261–268

    PubMed  Google Scholar 

  37. Stubbs JR, House JA, Ocque AJ et al (2016) Serum Trimethylamine-N-Oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 27(1):305–313

    CAS  PubMed  Google Scholar 

  38. Gessner A, di Giuseppe R, Koch M et al (2020) Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med 58(5):733–740

    CAS  PubMed  Google Scholar 

  39. Kim RB, Morse BL, Djurdjev O et al (2016) Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int 89(5):1144–1152

    CAS  PubMed  Google Scholar 

  40. Johnson C, Prokopienko AJ, West RE 3rd et al (2018) Decreased kidney function is associated with enhanced hepatic flavin monooxygenase activity and increased circulating Trimethylamine N-Oxide concentrations in mice. Drug Metab Dispos 46(9):1304–1309

    CAS  PubMed  Google Scholar 

  41. Xu KY, Xia GH, Lu JQ et al (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7(1):1445

    PubMed  PubMed Central  Google Scholar 

  42. Cho CE, Taesuwan S, Malysheva OV et al (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res 61(1):1770016

    Google Scholar 

  43. Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315

    PubMed  Google Scholar 

  44. Prokopienko AJ, West RE 3rd, Schrum DP et al (2019) Metabolic Activation of Flavin Monooxygenase-mediated Trimethylamine-N-Oxide Formation in Experimental Kidney Disease. Sci Rep 9(1):15901

    PubMed  PubMed Central  Google Scholar 

  45. Gupta N, Buffa JA, Roberts AB et al (2020) Targeted inhibition of gut microbial Trimethylamine N-Oxide production reduces renal Tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol 40(5):1239–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  46. El-Deeb OS, Atef MM, Hafez YM (2019) The interplay between microbiota-dependent metabolite trimethylamine N-oxide, Transforming growth factor beta/SMAD signaling and inflammasome activation in chronic kidney disease patients: A new mechanistic perspective. J Cell Biochem 120(9):14476–14485

    CAS  PubMed  Google Scholar 

  47. Yu H, Geng WC, Zheng Z et al (2019) Facile fluorescence monitoring of gut microbial metabolite Trimethylamine n-oxide via molecular recognition of Guanidinium-Modified Calixarene. Theranostics 9(16):4624–4632

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen S, Henderson A, Petriello MC et al (2019) Trimethylamine N-Oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30(6):1141–1151

    CAS  PubMed  Google Scholar 

  49. Al-Obaide MAI, Singh R, Datta P et al (2017) Gut Microbiota-dependent Trimethylamine-N-oxide and serum biomarkers in patients with T2DM and Advanced CKD. J Clin Med 6(9):86

    PubMed  PubMed Central  Google Scholar 

  50. Mueller DM, Allenspach M, Othman A et al (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243(2):638–644

    CAS  PubMed  Google Scholar 

  51. Posada-Ayala M, Zubiri I, Martin-Lorenzo M et al (2014) Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 85(1):103–111

    CAS  PubMed  Google Scholar 

  52. Bain MA, Faull R, Fornasini G et al (2006) Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 21(5):1300–1304

    CAS  PubMed  Google Scholar 

  53. Manor O, Zubair N, Conomos MP et al (2018) A Multi-omic Association Study of Trimethylamine N-Oxide. Cell Rep 24(4):935–946

    CAS  PubMed  Google Scholar 

  54. Mafune A, Iwamoto T, Tsutsumi Y et al (2016) Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exp Nephrol 20(5):731–739

    CAS  PubMed  Google Scholar 

  55. Missailidis C, Hallqvist J, Qureshi AR et al (2016) Serum Trimethylamine-N-Oxide Is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 11(1):e0141738

    PubMed  PubMed Central  Google Scholar 

  56. Bell JD, Lee JA, Lee HA et al (1991) Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide. Biochim Biophys Acta 1096(2):101–107

    CAS  PubMed  Google Scholar 

  57. Organ CL, Otsuka H, Bhushan S et al (2016) Choline diet and its gut microbe-derived metabolite, Trimethylamine N-Oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail 9(1):e002314

    CAS  PubMed  Google Scholar 

  58. Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu W, Gregory JC, Org E et al (2016) Gut Microbial metabolite TMAO enhances platelet Hyperreactivity and Thrombosis risk. Cell 165(1):111–124

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oakley CI, Vallejo JA, Wang D et al (2020) Trimethylamine-N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 318(5):H1272–H1282

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li T, Gua C, Wu B et al (2018) Increased circulating trimethylamine N-oxide contributes to endothelial dysfunction in a rat model of chronic kidney disease. Biochem Biophys Res Commun 495(2):2071–2077

    CAS  PubMed  Google Scholar 

  62. Zhang X, Li Y, Yang P et al (2020) Trimethylamine-N-Oxide promotes vascular calcification through activation of NLRP3 (Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) Inflammasome and NF-kappaB (Nuclear Factor kappaB) Signals. Arterioscler Thromb Vasc Biol 40(3):751–765

    CAS  PubMed  Google Scholar 

  63. Seldin MM, Meng Y, Qi H et al (2016) Trimethylamine N-Oxide Promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappab. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002767

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shih DM, Zhu W, Schugar RC et al (2019) Genetic deficiency of flavin-containing monooxygenase 3 ( Fmo3) protects against thrombosis but has only a minor effect on plasma lipid levels-brief report. Arterioscler Thromb Vasc Biol 39(6):1045–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang WH, Wang Z, Levison BS et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Senthong V, Wang Z, Li XS et al (2016) Intestinal microbiota-generated metabolite Trimethylamine-N-Oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a courage-like patient cohort. J Am Heart Assoc 5(6):e002816

    PubMed  PubMed Central  Google Scholar 

  67. Winther SA, Ollgaard JC, Tofte N et al (2019) Utility of plasma concentration of Trimethylamine N-Oxide in predicting cardiovascular and renal complications in individuals with type 1 Diabetes. Diabetes Care 42(8):1512–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shafi T, Powe NR, Meyer TW et al (2017) Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol 28(1):321–331

    CAS  PubMed  Google Scholar 

  69. Hsu CN, Chang-Chien GP, Lin S et al (2020) Association of Trimethylamine, Trimethylamine N-oxide, and dimethylamine with cardiovascular risk in children with chronic kidney disease. J Clin Med 9(2):336

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaysen GA, Johansen KL, Chertow GM et al (2015) Associations of Trimethylamine N-Oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 25(4):351–356

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stubbs JR, Stedman MR, Liu S et al (2019) Trimethylamine N-oxide and cardiovascular outcomes in patients with ESKD receiving maintenance hemodialysis. Clin J Am Soc Nephrol 14(2):261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitchell SM, Milan AM, Mitchell CJ et al (2019) Protein intake at twice the rda in older men increases circulatory concentrations of the microbiome metabolite Trimethylamine-N-Oxide (TMAO). Nutrients 11(9):2207

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu WK, Chen CC, Liu PY et al (2019) Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut 68(8):1439–1449

    CAS  PubMed  Google Scholar 

  74. Korsmo HW, Jiang X, Caudill MA (2019) Choline: exploring the growing science on its benefits for moms and babies. Nutrients 11(8):1823

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chin EWM, Lim WM, Ma D et al (2019) Choline rescues behavioural deficits in a mouse model of rett syndrome by modulating neuronal plasticity. Mol Neurobiol 56(6):3882–3896

    CAS  PubMed  Google Scholar 

  76. Wang Z, Roberts AB, Buffa JA et al (2015) Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 163(7):1585–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuka J, Liepinsh E, Makrecka-Kuka M et al (2014) Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci 117(2):84–92

    CAS  PubMed  Google Scholar 

  78. Cha RH, Kang SW, Park CW et al (2016) A Randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin J Am Soc Nephrol 11(4):559–567

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Six I, Gross P, Remond MC et al (2015) Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120. Atherosclerosis 243(1):248–256

    CAS  PubMed  Google Scholar 

  80. Schulman G, Agarwal R, Acharya M et al (2006) A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am J Kidney Dis 47(4):565–577

    CAS  PubMed  Google Scholar 

  81. Nakamura T, Sato E, Fujiwara N et al (2011) Oral adsorbent AST-120 ameliorates tubular injury in chronic renal failure patients by reducing proteinuria and oxidative stress generation. Metabolism 60(2):260–264

    CAS  PubMed  Google Scholar 

  82. Chen YC, Wu MY, Hu PJ et al (2019) Effects and safety of an oral adsorbent on chronic kidney disease progression: a systematic review and meta-analysis. J Clin Med. https://doi.org/10.3390/jcm8101718

    Article  PubMed  PubMed Central  Google Scholar 

  83. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsai YL, Lin TL, Chang CJ et al (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26(1):3

    PubMed  PubMed Central  Google Scholar 

  85. Chen ML, Yi L, Zhang Y et al (2016) Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the Gut Microbiota. MBio 7(2):e02210-02215

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Poesen R, Evenepoel P, de Loor H et al (2016) The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLoS ONE 11(4):e0153893

    PubMed  PubMed Central  Google Scholar 

  87. Hill E, Sapa H, Negrea L et al (2020) Effect of oat beta-glucan supplementation on chronic kidney disease: a feasibility study. J Ren Nutr 30(3):208–215

    CAS  PubMed  Google Scholar 

  88. Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88(5):958–966

    CAS  PubMed  Google Scholar 

  89. Rossi M, Johnson DW, Morrison M et al (2016) Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): a Randomized Trial. Clin J Am Soc Nephrol 11(2):223–231

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tripolt NJ, Leber B, Triebl A et al (2015) Effect of Lactobacillus casei Shirota supplementation on trimethylamine-N-oxide levels in patients with metabolic syndrome: an open-label, randomized study. Atherosclerosis 242(1):141–144

    CAS  PubMed  Google Scholar 

  91. Chen S, Jiang PP, Yu D et al (2020) Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Eur J Nutr. https://doi.org/10.1007/s00394-020-02278-1

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moludi J, Saiedi S, Ebrahimi B et al (2020) Probiotics supplementation on cardiac remodeling following myocardial infarction: a single-center double-blind clinical study. J Cardiovasc Transl Res. https://doi.org/10.1007/s12265-020-10052-1

    Article  PubMed  Google Scholar 

  93. Qiu L, Tao X, Xiong H et al (2018) Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct 9(8):4299–4309

    CAS  PubMed  Google Scholar 

  94. Liu J, Lai L, Lin J et al (2020) Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota. Int J Biol Sci 16(5):790–802

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nanto-Hara F, Kanemitsu Y, Fukuda S et al (2020) The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol Dial Transplant 35(2):250–264

    CAS  PubMed  Google Scholar 

  96. Zhu W, Buffa JA, Wang Z et al (2018) Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 16(9):1857–1872

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100

    CAS  PubMed  Google Scholar 

  98. Phillips IR, Shephard EA (2017) Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 13(2):167–181

    CAS  PubMed  Google Scholar 

  99. Warrier M, Shih DM, Burrows AC et al (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10(3):326–338

    CAS  PubMed  PubMed Central  Google Scholar 

  100. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    CAS  PubMed  Google Scholar 

  101. Dumas ME, Rothwell AR, Hoyles L et al (2017) Microbial-Host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep 20(1):136–148

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li Q, Korzan WJ, Ferrero DM et al (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23(1):11–20

    PubMed  Google Scholar 

  103. Ling AV, Gearing ME, Semova I et al (2018) foxo1 is required for most of the metabolic and hormonal perturbations produced by hepatic insulin receptor deletion in male mice. Endocrinology 159(3):1253–1263

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Major Project of Beijing Municipal Science and Technology Commission (D181100000118004, D181100000118002) and National Key R&D Program (2018YFE0126600).

Author information

Authors and Affiliations

Authors

Contributions

Document retrieval and original draft preparation, SP; picture drawing, DLZ; paper revision, SWD; project administration, XMC. All authors agree to the publication of this manuscript.

Corresponding author

Correspondence to Xiangmei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Zhao, D., Duan, S. et al. The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease. Int Urol Nephrol 55, 1747–1756 (2023). https://doi.org/10.1007/s11255-023-03500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03500-9

Keywords

Navigation