Skip to main content
Log in

A pseudo-likelihood estimator of the Ornstein–Uhlenbeck parameters from suprema observations

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this paper, we propose an estimator for the Ornstein–Uhlenbeck parameters based on observations of its supremum. We derive an analytic expression for the supremum density. Making use of the pseudo-likelihood method based on the supremum density, our estimator is constructed as the maximal argument of this function. Using weak-dependency results, we prove some statistical properties on the estimator such as consistency and asymptotic normality. Finally, we apply our estimator to simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262

    Article  MathSciNet  Google Scholar 

  • Alaton P, Djehiche B, Stillberger D (2002) On modelling and pricing weather derivatives. Appl Math Finance 9(1):1–20

    Article  Google Scholar 

  • Alili L, Patie P, Pedersen J (2005) Representations of the first hitting time density of an Ornstein–Uhlenbeck process. Stoch Model 21(4):967–980

    Article  MathSciNet  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B (Methodol) 36(2):192–225

    MathSciNet  Google Scholar 

  • Billingsley P (1965) Ergodic theory and information, vol 1. Wiley, New York

    Google Scholar 

  • Blanchet-Scalliet C, Dorobantu D, Gay L (2020) Joint law of an Ornstein–Uhlenbeck process and its supremum. J Appl Probab 57(2):541–558

    Article  MathSciNet  Google Scholar 

  • Blanchet-Scalliet C, Dorobantu D, Gay L, Maume-Deschamps V, Ribereau P (2018) Risk assessment using suprema data. Stoch Env Res Risk Assess 32(10):2839–2848

    Article  Google Scholar 

  • Blanchet-Scalliet C, Dorobantu D, Nieto B (2024) Some properties for \(\nu \)-zeros of Parabolic Cylinder functions. Le Matematiche. to appear

  • Bradley R (2005) Basic properties of strong mixing conditions. a survey and some open questions. Probab Surv 2:107–144

    Article  MathSciNet  Google Scholar 

  • Brody D, Syroka J, Zervos M (2002) Dynamical pricing of weather derivatives. Quant Finance 2(3):189–198

    Article  MathSciNet  Google Scholar 

  • Dacunha-Castelle D, Duflo M (2012) Probability and statistics, vol 2. Springer, Berlin

    Google Scholar 

  • Dischel B (1998) At last: a model for weather risk. Energy Power Risk Manage 11(3):20–21

    Google Scholar 

  • Dornier F, Queruel M (2000) Caution to the wind. Energy Power Risk Manage 13(8):30–32

    Google Scholar 

  • Doukhan P (2012) Mixing: properties and examples, vol 85. Springer, Berlin

    Google Scholar 

  • Gobet E, Matulewicz G (2017) Parameter estimation of Ornstein–Uhlenbeck process generating a stochastic graph. Stat Infer Stoch Process 20(2):211–235

    Article  MathSciNet  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol A J R Meteorol Soc 22(12):1441–1453

    Article  Google Scholar 

  • Laaidi K, Pascal M, Ledrans M, Le Tertre A, Medina S, Schonemann C (2004) Le système français d’alerte canicule et santé 2004 (Sacs 2004). un dispositif intégré au plan national canicule. Bulletin épidémiologique hebdomadaire 30–31:134–136

    Google Scholar 

  • Lebedev N (1965) Special functions and their applications. Phys Today 18(12):70

    Article  Google Scholar 

  • Mullowney P, Iyengar S (2008) Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 24(2):179–194

    Article  MathSciNet  Google Scholar 

  • Palka BP (1991) An introduction to complex function theory. Springer, Berlin

    Book  Google Scholar 

  • Pittaluga G, Sacripante L (1991) Inequalities for the zeros of the Airy functions. SIAM J Math Anal 22(1):260–267

    Article  MathSciNet  Google Scholar 

  • Robert J, John V, William P (2005) Pairs trading. Quant Finance 5(3):271–276

    Article  MathSciNet  Google Scholar 

  • Saporta G (2006) Probabilités, analyse des données et statistique. Editions technip

  • Stout WF (1974) Almost sure convergence. Academic Press Inc, Cambridge

    Google Scholar 

  • Trost DC, Overman EA, Ostroff JH, Xiong W, March P (2010) A model for liver homeostasis using modified mean-reverting Ornstein–Uhlenbeck Process. Comput Math Methods Med 11(3):21

    MathSciNet  Google Scholar 

  • Van der Vaart AW (2000) Asymptotic statistics, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  • Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5(2):177–188

    Article  Google Scholar 

  • Wilkinson M, Pumir A (2011) Spherical Ornstein–Uhlenbeck processes. J Stat Phys 145(1):113–142

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to two referees for their helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Nieto.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Parabolic cylinder function

We recall the definition and some auxiliary results about the Parabolic cylinder function. Some of these results can be found in Blanchet-Scalliet et al. (2020, 2024); Lebedev (1965).

For all \(x,\nu \in {\mathbb {R}}\), the Parabolic cylinder function \(D_\nu \left( x\right) \) is a solution of the differential equation:

$$\begin{aligned} y''\left( x\right) +\left( \nu +\frac{1}{2}-\frac{1}{4}x^2\right) y\left( x\right) =0. \end{aligned}$$

Moreover for \(\nu \in {\mathbb {C}}\) with \(\text {Re}(\nu )>0\) and \(z\in {\mathbb {C}}\), the function \((z,\nu )\mapsto D_{\nu }(z)\) is a holomorphic function ( Lebedev 1965, Chapter 10).

The Parabolic cylinder function satisfies the following relations:

$$\begin{aligned} \partial _x D_{\nu }(x)=\nu D_{\nu -1}(x)-\frac{x}{2}D_\nu (x), \end{aligned}$$

and for all \(\nu ,a\in {\mathbb {R}}\),

$$\begin{aligned} \int _{-\infty }^a e^{-\frac{x^2}{2}}D_{\nu }(-x\sqrt{2})dx=\frac{e^{-\frac{a^2}{2}}}{\sqrt{2}}D_{\nu -1}(-a\sqrt{2}). \end{aligned}$$
(A.1)

We remind now some properties of the Parabolic cylinder function \(\nu \)-zeros. Let \(n\in {\mathbb {N}}^\star \), we denote \(\nu _{n,m}\), the positive (ordered) zeros of the function \(\nu \mapsto D_{\nu }\left( -m\sqrt{2}\right) \). Then

$$\begin{aligned} \int _{-\infty }^m D^2_{\nu _{n,m}}(-x\sqrt{2})dx=-\frac{\nu _{n,m}}{\sqrt{2}}D_{\nu _{n,m}-1}(-m\sqrt{2})\partial _{\nu }D_{\nu _{n,m}}(-m \sqrt{2}). \end{aligned}$$
(A.2)

Furthermore, according to Blanchet-Scalliet et al. (2024):

$$\begin{aligned} \partial _m\nu _{n,m}&=\sqrt{2}\frac{\partial _x D_{\nu _{n,m}}(-m\sqrt{2})}{\partial _{\nu } D_{\nu _{n,m}}(-m\sqrt{2})} \end{aligned}$$
(A.3)
$$\begin{aligned}&=-\frac{2}{\sqrt{\pi }\int _0^\infty e^{-\left( 2\nu _{n,m}+1\right) u+m^2\tanh \left( u\right) }\text {erfc}\left( -m\sqrt{\tanh \left( u\right) } \right) \frac{du}{\sqrt{\sinh (u)\cosh (u)}}}. \end{aligned}$$
(A.4)

The following asymptotic expansion is verified:

$$\begin{aligned} \nu _{n,m}\underset{m\rightarrow -\infty }{=}\frac{m^2}{2}-\frac{1}{2}-|m|^\frac{2}{3} 2^{-\frac{1}{3}}a_n+O\left( |m|^{-\frac{2}{3}}\right) , \end{aligned}$$
(A.5)

where \(a_n\), \(n\in {\mathbb {N}}^\star \) are the zeros of the first kind Airy function. Furthermore, the following convergence is verified:

$$\begin{aligned} \nu _{n,m}\underset{m\rightarrow +\infty }{\longrightarrow }n-1. \end{aligned}$$
(A.6)

Recall that the zeros \(a_n\) of the first kind Airy function are all real, negative and satisfy the following inequality ( Pittaluga and Sacripante 1991), for \(n\ge 1\):

$$\begin{aligned} -\left( \frac{3\pi }{8}(4n-1)\right) ^\frac{2}{3}\left( 1+\frac{5}{48\left( \frac{3\pi }{8}(4n-1)\right) ^2} \right) <a_n\le -\left( \frac{3\pi }{8}(4n-1)\right) ^\frac{2}{3}. \end{aligned}$$
(A.7)

1.2 Smoothness of the cumulative distribution function

Some smoothness properties are needed to prove the set of derivations and continuities of the functions presented in the proof of consistency and asymptotic normality. These properties will be proved using results on holomorphic functions. Making use of (A.3), we can rewrite the cumulative distribution function as:

$$\begin{aligned} {\mathbb {P}}(S^{1,0}<m)=-\frac{e^{ -\lambda m^{2}}}{2\sqrt{{\lambda }{\pi }}}\sum _{n\ge 1} e^{-\lambda \nu _{n,m,\lambda }\Delta }\frac{\partial _m \nu _{n,m,\lambda }}{\nu _{n,m,\lambda }^{2}}. \end{aligned}$$
(A.8)

Proposition A.1

The cumulative distribution function of the supremum verifies the following properties:

  1. 1.

    \((m,\lambda )\mapsto {\mathbb {P}}(S^{1,0}<m)\) is a smooth function on \({\mathbb {R}}\times {\mathbb {R}}_+^\star \).

  2. 2.

    For any \(k,j\in {\mathbb {N}}^\star \):

    $$\begin{aligned} \partial _{\lambda }^k\partial _m^j{\mathbb {P}}(S^{1,0}<m)= \sum _{n\ge 1} \partial _{\lambda }^k\partial _m^j f_n(\Delta ,m,\lambda ), \end{aligned}$$

    with:

    $$\begin{aligned} f_n(\Delta ,m,\lambda )= -\frac{e^{-m^2\lambda -\lambda \nu _{n,m,\lambda }\Delta }}{\sqrt{2\pi }}\frac{D_{\nu _{n,m,\lambda }-1}\left( -m\sqrt{2\lambda }\right) }{\nu _{n,m,\lambda }\partial _{\nu }D_{\nu _{n,m,\lambda }}\left( -m\sqrt{2\lambda }\right) }. \end{aligned}$$
    (A.9)

Proof

We introduce the following notation, \({\mathbb {C}}^{\theta _1\le \text {arg} \le \theta _2}_{M_1\le |.|\le M_2}=\{z\in {\mathbb {C}} \text { s.t. } \theta _1\le \text {arg}(z) \le \theta _2 \text {, } M_1\le |z|\le M_2\}\). We denote \((z,\lambda )\mapsto {\tilde{F}}_\Delta (z,\lambda )\) the continuation of the cumulative distribution function on \({\mathbb {C}}\times {\mathbb {C}}^{-\frac{\pi }{2}<\text {arg}<\frac{\pi }{2}}_ {|.|\ne 0}\). According to the Implicit Function Theorem, the function \((z,\lambda )\mapsto \nu _{n,z,\lambda }\) is holomorphic. Then by composition of holomorphic functions, we deduce that (A.9) is holomorphic.

We can write \({\tilde{F}}_\Delta \) as follows:

$$\begin{aligned} {\tilde{F}}_\Delta (z,\lambda )&={\tilde{G}}_1(z,\lambda )\mathbbm {1}_{{\mathbb {C}}^{\frac{\pi }{2}<arg<\frac{3}{2\pi }}_{|.|>M}\times {\mathbb {C}}^{-\frac{\pi }{2}\le \text {arg}<\frac{\pi }{2}}_ {|.|>M}}(z,\lambda )+{\tilde{G}}_2(z,\lambda )\mathbbm {1}_{{\mathbb {C}}_{|.|<M}\times {\mathbb {C}}_{0<|.|<M}^{-\frac{\pi }{2}\le arg<\frac{\pi }{2}}}(z,\lambda )\\&+{\tilde{G}}_3(z,\lambda )\mathbbm {1}_{{\mathbb {C}}^{-\frac{\pi }{2}<arg<\frac{\pi }{2}}_{|.|>M}\times {\mathbb {C}}^{-\frac{\pi }{2}\le \text {arg}<\frac{\pi }{2}}_{{|.|>M}}}(z,\lambda ), \end{aligned}$$

with M large enough.

For \({\tilde{G}}_1\) and \({\tilde{G}}_3\), using the asymptotic expansion (A.5) and the limit (A.6), we easily prove the normal convergence of the associate series.

For \({\tilde{G}}_2\), the normal convergence can be obtained using the following equivalence from Alili et al. (2005):

$$\begin{aligned} \nu _{n,z,\lambda }\underset{n\rightarrow +\infty }{\sim }2n-1+\frac{4\lambda z^2}{\pi ^2}-2\frac{\sqrt{\lambda z^2}}{\pi }\sqrt{4n-1+4\frac{\lambda z^2}{\pi ^2}} \end{aligned}$$

and

$$\begin{aligned} D_{\nu }(z)\underset{\nu \rightarrow +\infty }{=}\sqrt{2}\left( \nu +\frac{1}{2}\right) ^{\frac{\nu }{2}}e^{-\left( \frac{\nu }{2}+\frac{1}{4}\right) }\cos \left( z\sqrt{\nu +\frac{1}{2}}-\frac{\pi \nu }{2}\right) \left( 1+O(\nu ^{-\frac{1}{2}})\right) . \end{aligned}$$

From Theorem 3.2 in Palka (1991), the conclusion holds. \(\square \)

1.3 Asymptotic expansions

For the integrability conditions required in the Ergodic Theorem, some asymptotic expansions on the cumulative distribution and the probability density of the supremum \(S^{1,0}\) are provided. In the following proofs, without loss of generality we assume \(\theta =(0,\lambda ,1)\). To return to the three parameters case, we replace m, \(\Delta \), \(\lambda \) respectively by \(m-\frac{\mu }{\lambda }\), \(\beta \Delta \) and \(\frac{\lambda }{\beta }\).

1.3.1 For large positive m

Since the zeros \(\nu _{n,m,\lambda }\) tend to positive integers when m goes to infinity, then we are able to give an asymptotic expansion for (5.1).

Proposition A.2

For large positive m, the cumulative distribution function of \(S^{1,0}\) has the following asymptotic expansion:

$$\begin{aligned} {\mathbb {P}}(S^{1,0}<m)\underset{m\rightarrow +\infty }{=}1-\frac{e^{-\lambda m^2}}{2\sqrt{\pi \lambda }m}\left( 1+o(m^{-2+\delta })\right) , \end{aligned}$$
(A.10)

with \(0<\delta <2\).

Proof

Recall that the cumulative distribution function is given by (5.1). Using Formula (A.6), we obtain:

$$\begin{aligned} {\mathbb {P}}(S^{1,0}<m)\underset{m\rightarrow +\infty }{=}\frac{1}{2\sqrt{\pi }}e^{-\lambda m^2}\left[ \frac{D^2_{-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }} D^2_{0}(-x\sqrt{2})dx}+ \sum _{n\ge 1}e^{-\lambda n\Delta }\frac{D^2_{n-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }}D^2_{n}(-x\sqrt{2})dx}\right] . \nonumber \\ \end{aligned}$$
(A.11)

According to Formula (10.5.4) in Lebedev (1965):

$$\begin{aligned} \frac{e^{-\lambda m^2}}{2\sqrt{\pi }}\frac{D^2_{-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }}D^2_{0}(-x\sqrt{2})dx}=\frac{1}{2}\left( 1+erf(m\sqrt{\lambda }) \right) , \end{aligned}$$

where \(erf(m)=\frac{2}{\sqrt{\pi }}\int _0^me^{-t^2}dt\) is the Error function. Then applying Formulas (4.9.6) and (4.13.4) in Lebedev (1965), we get:

$$\begin{aligned} \sum _{n=1}^\infty e^{-\lambda n \Delta }\frac{D^2_{n-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }}D^2_{n}(-x\sqrt{2\lambda })dx}\underset{m\rightarrow +\infty }{=}e^{-\lambda m^2\frac{1-e^{-\lambda \Delta }}{1+e^{-\lambda \Delta }}}O(1). \end{aligned}$$

As we combine these two results, we get:

$$\begin{aligned} {\mathbb {P}}(S^{1,0}<m)\underset{m\rightarrow +\infty }{=}\frac{1}{2}\left( 1+erf(m\sqrt{\lambda }) \right) +e^{-\lambda m^2\frac{1-e^{-\lambda \Delta }}{1+e^{-\lambda \Delta }}}O(1). \end{aligned}$$

Since \(1-erf(m)\underset{m\rightarrow +\infty }{=}\frac{e^{-m^2}}{\sqrt{\pi }m}(1+O(m^{-2}))\), the conclusion holds. \(\square \)

Proposition A.3

For large positive m, the asymptotic expansion of the probability density of \(S^{1,0}\) is given by:

$$\begin{aligned} f_\Delta (m,\lambda )\underset{m\rightarrow +\infty }{=}\sqrt{\frac{\lambda }{\pi }}e^{{-\lambda m^{2}}}\left( 1+me^{-\lambda {m^{2}}\frac{1-{e^{- \lambda \Delta }}}{1+{e^{- \lambda \Delta }}}}O(1)\right) , \end{aligned}$$
(A.12)

with \(\left| O(1)\right| \le \frac{4\sqrt{\lambda } e^{-\lambda \Delta }}{\sqrt{\pi (1-e^{-2\lambda \Delta })}}\).

Proof

When m goes to infinity, using (A.11) the derivative of the cumulative distribution function satisfies:

$$\begin{aligned} f_\Delta (m,\lambda )\underset{m\rightarrow +\infty }{=}\sqrt{\frac{\lambda }{\pi }}e^{-\lambda m^{2}}+\frac{1}{2\sqrt{\pi }}\partial _m\left[ e^{-\lambda m^2}\sum _{n\ge 1}e^{-\lambda n\Delta }\frac{D^{2}_{n-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }}D^2_{n}(-x\sqrt{2})dx}\right] . \end{aligned}$$

Using Formulas (4.9.5) and (4.13.4) in Lebedev (1965), one can prove that:

$$\begin{aligned} \partial _m\left[ e^{-\lambda m^2}\sum _{n\ge 1}e^{-\lambda n\Delta }\frac{D^2_{n-1}(-m\sqrt{2\lambda })}{\int _{-\infty }^{m\sqrt{\lambda }}D^2_{n}(-x\sqrt{2})dx}\right] \underset{m\rightarrow +\infty }{=}me^{-\frac{2\lambda m^2}{1+e^{-\lambda \Delta }}}O(1), \end{aligned}$$

with \(\left| O(1)\right| \le \frac{8\lambda e^{-\lambda \Delta }}{\sqrt{\pi (1-e^{-2\lambda \Delta })}}\). \(\square \)

Remark A.4

We have:

$$\begin{aligned} f_\Delta (m,\lambda )\underset{m\rightarrow +\infty }{=}e^{-\lambda m^2}\sqrt{\frac{\lambda }{\pi }}\left( 1+o(m^{-\alpha })\right) , \end{aligned}$$

with \(\alpha >0\).

Corollary A.4.1

For large positive m,

$$\begin{aligned} \log \left( f_\Delta (m,\lambda )\right) \underset{m\rightarrow +\infty }{=}-\lambda m^2 +\frac{1}{2}\log \left( \frac{\lambda }{\pi }\right) +me^{-m^2\lambda \frac{1-e^{-\Delta \lambda }}{1+e^{-\Delta \lambda }}}O(1), \end{aligned}$$
(A.13)

with \(|O(1)|\le \frac{16\sqrt{\lambda } e^{-\lambda \Delta }}{3\sqrt{\pi (1-e^{-2\lambda \Delta )}}}\).

A similar reasoning as the one in the proof of Propositions A.2 and A.3 may be applied to prove the following results:

Proposition A.5

For large positive m, the following asymptotic expansions are satisfied:

  1. 1.

    \(\partial _\lambda \log \left( f_\Delta (m,\lambda )\right) \underset{m\rightarrow +\infty }{=} -m^2+\frac{1}{2\lambda }+m^3e^{-m^2\lambda \frac{1-e^{-\lambda \Delta }}{1+e^{-\lambda \Delta }}}O(1).\)

  2. 2.

    \(\partial ^2_\lambda \log \left( f_\Delta (m,\lambda )\right) \underset{m\rightarrow +\infty }{=} -\frac{1}{2\lambda ^2}+m^5e^{-m^2\lambda \frac{1-e^{-\lambda \Delta }}{1+e^{-\lambda \Delta }}}O(1).\)

  3. 3.

    \(\partial ^3_\lambda \log \left( f_\Delta (m,\lambda )\right) \underset{m\rightarrow +\infty }{=} \frac{1}{\lambda ^3}+m^7e^{-m^2\lambda \frac{1-e^{-\lambda \Delta }}{1+e^{-\lambda \Delta }}}O(1).\)

1.3.2 For large negative m

Using (A.4) and (A.5), we can give an asymptotic expansion for the cumulative distribution function of \(S^{1,0}\) for large negative m.

Proposition A.6

For large negative m, the cumulative distribution function of \(S^{1,0}\) has the following asymptotic expansion:

$$\begin{aligned} {\mathbb {P}}(S^{1,0}<m)=2|m\sqrt{\lambda }|^{-3}\frac{e^{-\lambda m^2-\left( \frac{m^2\lambda }{2}-\frac{1}{2}\right) \lambda \Delta +|m|^\frac{2}{3}\lambda ^\frac{4}{3}2^{-\frac{1}{3}}a_1\Delta }}{\sqrt{\pi }}(1+o(1)), \end{aligned}$$
(A.14)

where \(a_1\) is the first zero of the Airy function of the first kind.

Sketch of the Proof

Formula (A.8) gives:

$$\begin{aligned} {\mathbb {P}}\left( S^{1,0}<m\right) =-\frac{e^{-\lambda m^2-\lambda \Delta \nu _{1,m,\lambda }}}{2\sqrt{\pi }}\frac{\partial _m\nu _{1,m,\lambda }}{\sqrt{\lambda }\nu _{1,m,\lambda }^2}\left( 1+\sum _{n\ge 2}e^{-\lambda \Delta (\nu _{n,m,\lambda }-\nu _{1,m,\lambda })}\frac{\nu _{1,m,\lambda }^2\partial _m\nu _{n,m,\lambda } }{\nu _{n,m,\lambda }^2 \partial _m \nu _{1,m,\lambda } }\right) . \end{aligned}$$

From the asymptotic expansion of \(\nu \)-zeros for large negative m (A.5) and (A.4), it follows that:

$$\begin{aligned} \frac{\partial _m\nu _{1,m,\lambda }}{\sqrt{\lambda }\nu _{1,m,\lambda }^2}&\underset{m\rightarrow -\infty }{=}\ -4|m\sqrt{\lambda }|^{-3}(1+o(1)),\\ \frac{\nu _{1,m,\lambda }^2\partial _m\nu _{n,m,\lambda } }{\nu _{n,m,\lambda }^2 \partial _m \nu _{1,m,\lambda } }&\underset{m\rightarrow -\infty }{\longrightarrow }\ 1 \hbox {~~if~~} n<N(m,\lambda )=\lfloor \frac{2\lambda m^2}{3\pi }+\frac{1}{4} \rfloor +1,\\ \frac{\nu _{1,m,\lambda }^2\partial _m\nu _{n,m,\lambda } }{\nu _{n,m,\lambda }^2 \partial _m \nu _{1,m,\lambda } }&\underset{m\rightarrow -\infty , n\rightarrow \infty }{\longrightarrow }0 \hbox {~~if~~} n>N(m,\lambda ). \end{aligned}$$

Therefore for all \(c>1\), there exists \(M>0\) such that for all \(m<-M\), we get:

$$\begin{aligned} \sum _{n\ge 2}e^{-\lambda \Delta (\nu _{n,m,\lambda }-\nu _{1,m,\lambda })}\frac{\nu _{1,m,\lambda }^2\partial _m\nu _{n,m,\lambda } }{\nu _{n,m,\lambda }^2 \partial _m \nu _{1,m,\lambda } }<c\sum _{n\ge 2}e^{-\lambda \Delta (\nu _{n,m,\lambda }-\nu _{1,m,\lambda })}. \end{aligned}$$

Using (A.7), we easily prove that for large negative m,

$$\begin{aligned} \sum _{n\ge 2}e^{-\lambda \Delta (\nu _{n,m,\lambda }-\nu _{1,m,\lambda })}=e^{-\lambda \Delta (\nu _{2,m,\lambda }-\nu _{1,m,\lambda })}O(1)=o(1). \end{aligned}$$

We then conclude the proof with (A.5). \(\square \)

Using similar arguments, we can prove the following result:

Proposition A.7

For large negative m, the asymptotic expansion of the probability density of \(S^{1,0}\) is given by:

$$\begin{aligned} f_\Delta (m,\lambda )=2|m|^{-2}\frac{e^{-\lambda m^2-\left( \frac{m^2\lambda }{2}-\frac{1}{2}\right) \lambda \Delta +|m|^\frac{2}{3}\lambda ^\frac{4}{3}2^{-\frac{1}{3}}a_1\Delta }}{\sqrt{\pi }}(2+\Delta \lambda )(1+O(|m|^{-\frac{2}{3}})). \end{aligned}$$
(A.15)

Corollary A.7.1

For large negative m,

$$\begin{aligned}{} & {} \log f_\Delta (m,\lambda )=-\lambda m^2-\left( \frac{m^2\lambda }{2}-\frac{1}{2}\right) \lambda \Delta +|m|^\frac{2}{3}\lambda ^\frac{4}{3}2^{-\frac{1}{3}}a_1\Delta \\{} & {} +\log \frac{2(2+\Delta \lambda )}{\sqrt{\pi }}-2\log (|m|)+O(|m|^{-\frac{2}{3}}). \end{aligned}$$

A similar reasoning as the one in the proof of Proposition A.6 may be applied to prove the following:

Proposition A.8

For large negative m, the following asymptotic expansions are satisfied:

  1. 1.

    \(\partial _\lambda \log (f_\Delta (m,\lambda ))=-m^2-\Delta \left( m^2\lambda -\frac{1}{2}-|m|^\frac{2}{3}\frac{2^{\frac{2}{3}}\lambda ^{-\frac{2}{3}}}{3}a_1\right) +\frac{\Delta }{2+\Delta \lambda }+|m|^{-\frac{2}{3}}O(1).\)

  2. 2.

    \(\partial ^2_\lambda \log (f_\Delta (m,\lambda ))=-\Delta \left( m^2+|m|^\frac{2}{3}\frac{2^{\frac{5}{3}}\lambda ^{-\frac{5}{3}}}{9}a_1\right) -\frac{\Delta ^2}{(2+\Delta \lambda )^2}+|m|^{-\frac{2}{3}}O(1).\)

  3. 3.

    \(\partial ^3_\lambda \log (f_\Delta (m,\lambda ))= \Delta |m|^\frac{2}{3}\frac{5}{27}2^{\frac{5}{3}}\lambda ^{-\frac{8}{3}}a_1+\frac{2\Delta ^3}{(2+\Delta \lambda )^3}+|m|^{-\frac{2}{3}}O(1).\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchet-Scalliet, C., Dorobantu, D. & Nieto, B. A pseudo-likelihood estimator of the Ornstein–Uhlenbeck parameters from suprema observations. Stat Inference Stoch Process 27, 407–425 (2024). https://doi.org/10.1007/s11203-024-09307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-024-09307-4

Keywords

Navigation