Skip to main content

Advertisement

Log in

Phase angle as an index of physiological status: validating bioelectrical assessments of hydration and cell mass in health and disease

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Bioelectrical impedance (BI) is a practical method to assess body composition in health and disease. This method relies on the passive conduction of an applied, safe, low-level alternating current through water and electrolytes in the body. Using a phase-sensitive device, BI yields measurements of impedance (Z) and its components, resistance (R) and reactance (Xc), that are related geometrically as phase angle (PhA). In vitro studies provide empirical evidence relating BI measurements to physiological variables. Cooking raw food samples results in greater decreases in PhA, predominantly Xc, with smaller reductions R indicating destruction of cell membrane integrity with simultaneous movement of fluid from intracellular to extracellular space. Infusion of saline into a cell-free model shows a proportional decrease in R with increases in volume. Saline infusion in a composite model of cells disproportionately decreases Xc and PhA, compared to R, demonstrating greater relative expansion of extracellular water (ECW) with a lesser relative increase in total fluid volume. Surgical patients treated with fluid infusion and diuresis demonstrate changes in Xc predominantly indicating relative changes in ECW with lesser variations in R indicating fluctuations in total fluid volume. Proteomics studies disclose strong independent associations of PhA with protein markers of fluid overload and protein proliferation. Interpretations of PhA measurements for body cell mass should be examined in the context of hydration status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

arctan:

arctangent.

BIA:

bioelectrical impedance analysis.

C:

capacitor.

CAP:

capacitance.

CM :

membrane capacitance.

d:

day.

ECF:

extracellular fluid.

ECW:

extracellular water.

E/I:

ratio of extracellular to intracellular water.

f:

frequency.

ICF:

intracellular fluid.

ICW:

intracellular water.

I/O:

fluid input to output balance.

PhA:

phase angle.

r:

correlation coefficient.

R:

resistance or resistor.

R2 :

coefficient of determination.

TBW:

total body water.

Z:

impedance.

References

  1. Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM. The Body Cell Mass and Its Supporting Environment: Body Composition in Health and Disease. Philadelphia: WB Saunders; 1963.

    Google Scholar 

  2. Nyboer J. Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation. 1950;2:811–21.

    Article  CAS  PubMed  Google Scholar 

  3. Dehghen M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008;9:26.

    Article  Google Scholar 

  4. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, Lilienthal Heitmann B, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols MWJ, Pichard A. C; ESPEN. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23:1430–53.

    Article  PubMed  Google Scholar 

  5. Buchholz AC, Bartok C, Schoeller DA. The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract. 2004;19:433–46.

    Article  PubMed  Google Scholar 

  6. Lukaski HC, Piccoli A. Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In: Preedy VR, editor. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. London: Springer; 2012. pp. 287–305.

    Chapter  Google Scholar 

  7. Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of hydration in clinical conditions: indirect and direct approaches using bioimpedance. Nutrients. 2019;11:809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. 3rd Edition. Amsterdam: Elsevier; 2015.

  9. Pethig R. Dielectric properties of body tissues. Clin Phys Physiol Meas. 1987;8(Suppl A):5–12.

    Article  PubMed  Google Scholar 

  10. McAdams ET, Jossinet J. Tissue impedance: a historical overview. Physiol Meas. 1995;16(3 Suppl A):A1–13.

    Article  CAS  PubMed  Google Scholar 

  11. Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: A critical review. Crit Rev Biomed Eng. 1989;17:25–104.

    CAS  PubMed  Google Scholar 

  12. Foster KR, Lukaski HC. Whole-body impedance–what does it measure? Am J Clin Nutr. 1996;64(3 Suppl):388S–396S.

    Article  CAS  PubMed  Google Scholar 

  13. Lukaski HC, Hall CB, Siders WA. Assessment of change in hydration in women during pregnancy and postpartum with bioelectrical impedance vectors. Nutrition. 2007;23:543–50.

    Article  PubMed  Google Scholar 

  14. Marini E, Campa F, Buffa R, Stagi S, Matias CN, Toselli S, Sardinha LB, Silva AM. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin Nutr. 2020;39:447–54.

    Article  PubMed  Google Scholar 

  15. Talluri T. Qualitative human body composition analysis assessed with bioelectrical impedance. Coll Antropol. 1998;22:427–32.

    CAS  PubMed  Google Scholar 

  16. Dittmar M, Reber H. New equations for estimating body cell mass from bioimpedance parallel models in healthy older Germans. Am J Physiol Endocrinol Metab. 2001;281:E1005–14.

    Article  CAS  PubMed  Google Scholar 

  17. Philippson MC. High-frequency currents in relation to cellular physiology. Proc R Soc Med. 1924;17(Electro Ther Sect):11–14.

  18. Barnett A. Bagno S. The physiological mechanisms involved in the clinical measure of phase angle. Am J Physiol. 1936;114:366–82.

    Article  Google Scholar 

  19. Scheltinga MR, Kimbrough TD, Jacobs DO, Wilmore DW. Altered cell membrane function in critical illness can be characterized by measuring body reactance. Surg Forum. 1990;41:43–4.

    Google Scholar 

  20. Ott M, Lembcke B, Fischer H, Jäger R, Polat H, Geier H, Rech M, Staszeswki S, Helm EB, Caspary WF. Early changes of body composition in human immunodeficiency virus-infected patients: tetrapolar body impedance analysis indicates significant malnutrition. Am J Clin Nutr. 1993;57:15–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chertow GM, Lowrie EG, Wilmore DW, Gonzalez J, Lew NL, Ling J, Leboff MS, Goti-Lieb MN, Huang W, Zebrowski B, College J, Lazarus JM. Nutritional assessment with bioelectrical impedance analysis in maintenance dialysis patients. J Am Soc Nephrol. 1995;6:75–81.

    Article  CAS  PubMed  Google Scholar 

  22. Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996;50:2103–8.

    Article  CAS  PubMed  Google Scholar 

  23. Toso S, Piccoli A, Gusella M, Menon D, Bononi A, Crepaldi G, Ferrazzi E. Altered tissue electric properties in lung cancer patients as detected by bioelectric impedance vector analysis. Nutrition. 2000;16:120–4.

    Article  CAS  PubMed  Google Scholar 

  24. Schwenk A, Beisenherz A, Römer K, Kremer G, Salzberger B, Elia M. Phase angle from bioelectrical impedance analysis remains an independent predictive marker in HIV-infected patients in the era of highly active antiretroviral treatment. Am J Clin Nutr. 2000;72:496–501.

    Article  CAS  PubMed  Google Scholar 

  25. Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. Eur J Appl Physiol. 2002;86:509–16.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr. 2004;92:957–62.

    Article  CAS  PubMed  Google Scholar 

  27. Meguid MM, Campos ACL, Lukaski HC, Kiell C. A new single cell in vitro model to determine volume and sodium concentration changes by bioelectrical impedance analysis. Nutrition. 1988;4:363–6.

    Google Scholar 

  28. Lukaski HC. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3 Suppl):397S–404S.

    Article  CAS  PubMed  Google Scholar 

  29. Yagunas Leyes Y. Assessment and follow up of injuries of lower limb by localized bioelectrical impedance in high performance athletes. Doctoral Thesis. Universitat Autonoma Barcelona, 22 April 2015.

  30. Meguid MM, Lukaski HC, Tripp MD, Rosenburg JM, Parker FB Jr. Rapid bedside method to assess changes in postoperative fluid status with bioelectrical impedance analysis. Surgery. 1992;112:502–8.

    CAS  PubMed  Google Scholar 

  31. Huemer MT, Petrera A, Hauck SM, Drey M, Peters A, Thorand B. Proteomics of the phase angle: Results from the population-based KORA S4 study. Clin Nutr. 2022;41:1818–26.

    Article  CAS  PubMed  Google Scholar 

  32. Scicchitano P, Ciccone MM, Passantino A, Valle R, De Palo M, Sasanelli P, Sanasi M, Piscopo A, Guida P, Caldarola P, Massari F. Congestion and nutrition as determinants of bioelectrical phase angle in heart failure. Heart Lung. 2020;49:724–8.

    Article  PubMed  Google Scholar 

  33. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31:854–61.

    Article  PubMed  Google Scholar 

  34. Stobäus N, Pirlich M, Valentini L, Schulzke JD, Norman K. Determinants of bioelectrical phase angle in disease. Br J Nutr. 2012;107:1217–20.

    Article  PubMed  Google Scholar 

  35. Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46:534–9.

    Article  CAS  PubMed  Google Scholar 

  36. Norman K, Smoliner C, Kilbert A, Valentini L, Lochs H, Pirlich M. Disease-related malnutrition but not underweight by BMI is reflected by disturbed electric tissue properties in the bioelectrical impedance vector analysis. Br J Nutr. 2008;100:590–5.

    Article  CAS  PubMed  Google Scholar 

  37. Piccoli A, Codognotto M, Piasentin P, Naso A. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA). Clin Nutr. 2014;33:673–7.

    Article  PubMed  Google Scholar 

  38. Lukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care. 2017;20:330–9.

    Article  PubMed  Google Scholar 

  39. Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney Int. 1998;53:1036–43.

    Article  CAS  PubMed  Google Scholar 

  40. Campa F, Matias C, Gatterer H, Toselli S, Koury JC, Andreoli A, Melchiorri G, Sardinha LB, Silva AM. Classic bioelectrical impedance vector reference values for assessing body composition in male and female athletes. Int J Environ Res Public Health. 2019;16:5066.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Piccoli A, Brunani A, Savia G, Pillon L, Favaro E, Berselli ME, Cavagnini F. Discriminating between body fat and fluid changes in the obese adult using bioimpedance vector analysis. Int J Obes Relat Metab Disord. 1998;22:97–104.

    Article  CAS  PubMed  Google Scholar 

  42. Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, Ellershaw J. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin Nutr ESPEN. 2019;30:59–66.

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Lukaski.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. A. Talluri was founder and president of Akern Srl, and is no longer involved in this company.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukaski, H.C., Talluri, A. Phase angle as an index of physiological status: validating bioelectrical assessments of hydration and cell mass in health and disease. Rev Endocr Metab Disord 24, 371–379 (2023). https://doi.org/10.1007/s11154-022-09764-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09764-3

Keywords

Navigation