Skip to main content

Advertisement

Log in

Relationships between endogenous and exogenous testosterone and cardiovascular disease in men

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

In this narrative review, we discuss the evidence about the controversy about the cardiovascular effects of endogenous and exogenous testosterone in men. Prospective cohort studies with follow-up of ~5–15 years generally indicate no association or a possible inverse relationship between serum endogenous testosterone concentrations and composite major cardiovascular events, cardiovascular deaths and overall mortality. Pharmacoepidemiological studies of large databases generally show no association between testosterone therapy and incident major cardiovascular events, and some pharmacoepidemiological studies demonstrate an association with decreased overall mortality. Randomized, placebo-controlled trials indicate that there is no increased incidence of overall major cardiovascular events with 1–3 years of testosterone therapy. These placebo-controlled trials have major limitations including small numbers of participants, short duration of testosterone therapy and follow-up, and lack of systematic adjudication of cardiovascular events. Overall, the evidence indicates that endogenous testosterone concentrations and testosterone therapy at physiological dosages confer no or minimal effects on the incidence of cardiovascular outcomes. There is insufficient evidence to make conclusions about testosterone therapy for patients at high risk of cardiovascular events (e.g., men with recent myocardial infarctions or stroke and men with recurrent idiopathic deep venous thromboses). In general, clinicians should avoid prescribing supraphysiological testosterone therapy to hypogonadal men or men with slightly low to low-normal serum testosterone concentrations and no identified disorder of the hypothalamus-pituitary-testicular axis because of the uncertain cardiovascular risks and the lack of proven health benefits. For most men with bona fide hypogonadism, benefits of testosterone therapy exceed the potential risk of adverse cardiovascular effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heberden W. Commentaries. Boston: printed by Wells and Lilly, 1818;295–8. https://wellcomecollection.org/works/vkngqvxf. Downloaded 1 Dec 2021.

  2. Osler W. Lectures on Angina Pectoris and allied states. New York, NY: D Appleton & Company; 1897. p. 20–45.

  3. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–e596.

  4. Man JJ, Beckman JA, Jaffe IZ. Sex as a biological variable in atherosclerosis. Circ Res. 2020;126:1297–319.

    Article  CAS  Google Scholar 

  5. Shufelt CL, Pacheco C, Tweet MS, Miller VM. Sex-Specific physiology and cardiovascular disease. Adv Exp Med Biol. 2018;1065:433–54.

    Article  Google Scholar 

  6. O’Neil A, Scovelle AJ, Milner AJ, Kavanagh A. Gender/sex as a social determinant of cardiovascular risk. Circulation. 2018;137:854–64.

    Article  Google Scholar 

  7. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  Google Scholar 

  8. Rossouw J, Prentice R, Manson J, Wu L, Barad D, Barnabei V, et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA. 2007;297:1465–77.

    Article  CAS  Google Scholar 

  9. Hsia J, Langer RD, Manson JE, Kuller L, Johnson KC, Hendrix SL, et al. Conjugated equine estrogens and coronary heart disease. Arch Intern Med. 2006;166:357–65.

    Article  CAS  Google Scholar 

  10. Schierbeck L, Rejnmark L, Tofteng C, Stilgren L, Eiken P, Mosekilde L, et al. Effect of hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomized trial. BMJ. 2012;345: e6409.

    Article  Google Scholar 

  11. Hodis HN, Mack WJ, Henderson VW, Shoupe D, Budoff MJ, Hwang-Levine J, et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N Engl J Med. 2016;374:1221–31.

    Article  CAS  Google Scholar 

  12. Rees DA, Dayan CM. Commentary: Testosterone and the metabolic syndrome: Cause or consequence? Int J Epidemiol. 2011;40:207–9.

    Article  Google Scholar 

  13. Davis SR, Wahlin-Jacobsen S. Testosterone in women–the clinical significance. Lancet Diabetes Endocrinol. 2015;3:980–92.

    Article  CAS  Google Scholar 

  14. Wang H, Li Y, Wang X, Bu J, Yan G, Lou D. Endogenous sex hormone levels and coronary heart disease risk in postmenopausal women: a meta-analysis of prospective studies. Eur J Prev Cardiol. 2017;24:600–11.

    Article  Google Scholar 

  15. Armeni E, Lambrinoudaki I. Androgens and cardiovascular disease in women and men. Maturitas. 2017;104:54–72.

    Article  CAS  Google Scholar 

  16. Huhtaniemi IT, Tajar A, Lee DM, O’Neill TW, Finn JD, Bartfai G, et al. Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnostics in aging men. Eur J Endocrinol. 2012;166:983–91.

    Article  CAS  Google Scholar 

  17. Haring R, Baumeister SE, Nauck M, Völzke H, Keevil BG, Brabant G, et al. Testosterone and cardiometabolic risk in the general population - the impact of measurement method on risk associations: a comparative study between immunoassay and mass spectrometry. Eur J Endocrinol. 2013;169:463–70.

    Article  CAS  Google Scholar 

  18. Ohlsson C, Nilsson ME, Tivesten A, Ryberg H, Mellström D, Karlsson MK, et al. Comparisons of immunoassay and mass spectrometry measurements of serum estradiol levels and their influence on clinical association studies in men. J Clin Endocrinol Metab. 2013;98:E1097–102.

    Article  CAS  Google Scholar 

  19. Denver N, Khan S, Homer NZM, MacLean MR, Andrew R. Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol. 2019;192: 105373.

    Article  CAS  Google Scholar 

  20. Yeap BB, Marriott RJ, Antonio L, Chan YX, Raj S, Dwivedi G, et al. Serum testosterone is inversely and sex hormone-binding globulin is directly associated with all-cause mortality in men. J Clin Endocrinol Metab. 2021;106:e625–37.

    Article  Google Scholar 

  21. Yeap BB, Marriott RJ, Antonio L, Raj S, Dwivedi G, Reid CM, et al. Associations of serum testosterone and sex hormone-binding globulin with incident cardiovascular events in middle-aged to older men. Ann Intern Med. 2002;174:159–70.

    Google Scholar 

  22. Smith GD, Ben-Shlomo Y, Beswick A, Yarnell J, Lightman S, Elwood P. Cortisol, testosterone, and coronary heart disease: Prospective evidence from the Caerphilly study. Circulation. 2005;112:332–40.

    Article  CAS  Google Scholar 

  23. Arnlöv J, Pencina MJ, Amin S, Nam BH, Benjamin EJ, Murabito JM, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. 2006;145:176–84.

    Article  Google Scholar 

  24. Araujo AB, Kupelian V, Page ST, Handelsman DJ, Bremner WJ, McKinlay JB. Sex steroids and all-cause and cause-specific mortality in men. Arch Intern Med. 2007;167:1252–60.

  25. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93:68–75.

    Article  CAS  Google Scholar 

  26. Khaw KT, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation. 2007;116:2694–701.

    Article  CAS  Google Scholar 

  27. Vikan T, Johnsen SH, Schirmer H, Njølstad I, Svartberg J. Endogenous testosterone and the prospective association with carotid atherosclerosis in men: the Tromsø study. Eur J Epidemiol. 2009;24:289–95.

    Article  CAS  Google Scholar 

  28. Haring R, Teng Z, Xanthakis V, Coviello A, Sullivan L, Bhasin S, et al. Association of sex steroids, gonadotrophins, and their trajectories with clinical cardiovascular disease and all-cause mortality in elderly men from the Framingham Heart Study. Clin Endocrinol (Oxf). 2013;78:629–34.

    Article  CAS  Google Scholar 

  29. Soisson V, Brailly-Tabard S, Helmer C, Rouaud O, Ancelin ML, Zerhouni C, et al. A J-shaped association between plasma testosterone and risk of ischemic arterial event in elderly men: the French 3C cohort study. Maturitas. 2013;75:282–8.

    Article  CAS  Google Scholar 

  30. Ohlsson C, Barrett-Connor E, Bhasin S, Orwoll E, Labrie F, Karlsson MK, et al. High serum testosterone is associated with reduced risk of cardiovascular events in elderly men. The MrOS (Osteoporotic Fractures in Men) study in Sweden. J Am Coll Cardiol. 2011;58:1674–81.

  31. Shores MM, Biggs ML, Arnold AM, Smith NL, Longstreth WT Jr, Kizer JR, et al. Testosterone, dihydrotestosterone, and incident cardiovascular disease and mortality in the cardiovascular health study. J Clin Endocrinol Metab. 2014;99:2061–8.

    Article  CAS  Google Scholar 

  32. Yeap BB, Alfonso H, Chubb SA, Handelsman DJ, Hankey GJ, Almeida OP, et al. In older men an optimal plasma testosterone is associated with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart disease mortality, while estradiol levels do not predict mortality. J Clin Endocrinol Metab. 2014b;99:E9-18.

    Article  Google Scholar 

  33. Pye SR, Huhtaniemi IT, Finn JD, Lee DM, O'Neill TW, Tajar A, et al. EMAS Study Group. Late-onset hypogonadism and mortality in aging men. J Clin Endocrinol Metab. 2014;99:1357–66.

  34. Srinath R, Hill Golden S, Carson KA, Dobs A. Endogenous testosterone and its relationship to preclinical and clinical measures of cardiovascular disease in the Atherosclerosis Risk in Communities study. J Clin Endocrinol Metab. 2015;100:1602–8.

    Article  CAS  Google Scholar 

  35. Chan YX, Knuiman MW, Hung J, Divitini ML, Beilby JP, Handelsman DJ, et al. Neutral associations of testosterone, dihydrotestosterone and estradiol with fatal and non-fatal cardiovascular events, and mortality in men aged 17–97 years. Clin Endocrinol (Oxf). 2016;85:575–82.

    Article  CAS  Google Scholar 

  36. Hsu B, Cumming RG, Naganathan V, Blyth FM, Le Couteur DG, Hirani V, et al. Temporal changes in androgens and estrogens are associated with all-cause and cause-specific mortality in older Men. J Clin Endocrinol Metab. 2016;101:2201–10.

    Article  CAS  Google Scholar 

  37. Collet TH, Ewing SK, Ensrud KE, Laughlin GA, Hoffman AR, Varosy PD, et al. Endogenous testosterone levels and the risk of incident cardiovascular events in elderly men: The MrOS prospective study. J Endocr Soc. 2020;4:bvaa038.

  38. Marriott RJ, Harse J, Murray K, Yeap BB. Systematic review and meta-analyses on associations of endogenous testosterone concentration with health outcomes in community-dwelling men. BMJ Open. 2021;11: e048013.

    Article  Google Scholar 

  39. Gyawali P, Martin SA, Heilbronn LK, Vincent AD, Jenkins AJ, Januszewski AS, et al. Higher serum sex hormone-binding globulin levels are associated with incident cardiovascular disease in men. J Clin Endocrinol Metab. 2019;104:6301–15.

    Article  Google Scholar 

  40. Corona G, Filippi S, Bianchi N, Dicuio M, Rastrelli G, Concetti S, et al. Cardiovascular risks of androgen deprivation therapy for prostate cancer. World J Mens Health. 2021;39:429–43.

    Article  Google Scholar 

  41. Gheorghe GS, Hodorogea AS, Ciobanu A, Nanea IT, Gheorghe ACD. Androgen deprivation therapy, hypogonadism and cardiovascular toxicity in men with advanced prostate cancer. Curr Oncol. 2021;28:3331–46.

    Article  Google Scholar 

  42. Shores MM, Walsh TJ, Korpak A, Krakauer C, Forsberg CW, Fox AE, et al. Association between testosterone treatment and risk of incident cardiovascular events among US male veterans with low testosterone levels and multiple medical comorbidities. J Am Heart Assoc. 2021;10: e020562.

    Article  CAS  Google Scholar 

  43. Layton JB, Li D, Meier CR, Sharpless JL, Stürmer T, Brookhart MA. Injection testosterone and adverse cardiovascular events: a case-crossover analysis. Clin Endocrinol (Oxf). 2018;88:719–27.

    Article  CAS  Google Scholar 

  44. Argalious MY, Steib J, Daskalakis N, Mao G, Li M, Armanyous S, et al. Association of testosterone replacement therapy and the incidence of a composite of postoperative in-hospital mortality and cardiovascular events in men undergoing cardiac surgery. Anesth Analg. 2020;130:890–8.

    Article  Google Scholar 

  45. Wallis CJ, Lo K, Lee Y, Krakowsky Y, Garbens A, Satkunasivam R, et al. Survival and cardiovascular events in men treated with testosterone replacement therapy: an intention-to-treat observational cohort study. Lancet Diabetes Endocrinol. 2016;4:498–506.

    Article  CAS  Google Scholar 

  46. Anderson JL, May HT, Lappé DL, Bair T, Le V, Carlquist JF, et al. Impact of testosterone replacement therapy on myocardial infarction, stroke, and death in men with low testosterone oncentrations in an integrated health care system. Am J Cardiol. 2016;117:794–9.

    Article  CAS  Google Scholar 

  47. Cheetham TC, An J, Jacobsen SJ, Niu F, Sidney S, Quesenberry CP, et al. Association of testosterone replacement with cardiovascular outcomes among men with androgen deficiency. JAMA Intern Med. 2017;177:491–9.

    Article  Google Scholar 

  48. Vigen R, O'Donnell CI, Barón AE, Grunwald GK, Maddox TM, Bradley SM, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–36. Erratum in: JAMA. 2014;311:967.

  49. Loo SY, Azoulay L, Nie R, Dell’Aniello S, Yu OHY, Renoux C. Cardiovascular and cerebrovascular safety of testosterone replacement therapy among aging men with low testosterone levels: a cohort study. Am J Med. 2019;132:1069-1077.e4.

    Article  CAS  Google Scholar 

  50. Corona G, Rastrelli G, Di Pasquale G, Sforza A, Mannucci E, Maggi M. Testosterone and cardiovascular risk: Meta-analysis of interventional studies. J Sex Med. 2018;15:820–38.

    Article  Google Scholar 

  51. Elliott J, Kelly SE, Millar AC, Peterson J, Chen L, Johnston A, et al. Testosterone therapy in hypogonadal men: a systematic review and network meta-analysis. BMJ Open. 2017;7: e015284.

    Google Scholar 

  52. Gluud C. The Copenhagen Study Group for Liver Diseases. Testosterone treatment of men with alcoholic cirrhosis: a double-blind study. The Copenhagen Study Group for Liver Diseases. Hepatology. 1986;6:807–13.

  53. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363:109–22.

    Article  CAS  Google Scholar 

  54. Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA, et al. Testosterone trials investigators. Effects of testosterone treatment in older men. N Engl J Med. 2016;374:611–24.

  55. Budoff MJ, Ellenberg SS, Lewis CE, Mohler ER 3rd, Wenger NK, Bhasin S, et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA. 2017;317:708–16.

  56. Basaria S, Harman SM, Travison TG, Hodis H, Tsitouras P, Budoff M, et al. Effects of testosterone administration for 3 years on subclinical atherosclerosis progression in older men with low or low-normal testosterone levels: a randomized clinical trial. JAMA. 2015;314:570–81.

    Article  CAS  Google Scholar 

  57. Yeap BB, Alfonso H, Chubb SA, Hankey GJ, Handelsman DJ, Golledge J, et al. In older men, higher plasma testosterone or dihydrotestosterone is an independent predictor for reduced incidence of stroke but not myocardial infarction. J Clin Endocrinol Metab. 2014a;99:4565–73.

    Article  CAS  Google Scholar 

  58. Yeap BB, Marriott RJ, Antonio L, Raj S, Dwivedi G, Reid CM, et al. Associations of serum testosterone and sex hormone-binding globulin with incident cardiovascular events in middle-aged to older men. Ann Intern Med. 2022;175:159–70.

    Article  Google Scholar 

  59. Luo S, Au Yeung SL, Zhao JV, Burgess S, Schooling CM. Association of genetically predicted testosterone with thromboembolism, heart failure, and myocardial infarction: Mendelian randomisation study in UK Biobank. BMJ. 2019;364: l476.

    Article  Google Scholar 

  60. Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9: e85805.

    Article  Google Scholar 

  61. Shores MM. Testosterone treatment and cardiovascular events in prescription database studies. Asian J Androl. 2018;20:138–44.

    Article  CAS  Google Scholar 

  62. Baillargeon J, Urban RJ, Kuo YF, Ottenbacher KJ, Raji MA, Du F, et al. Risk of myocardial infarction in older men receiving testosterone therapy. Ann Pharmacother. 2014;48:1138–44.

    Article  CAS  Google Scholar 

  63. Etminan M, Skeldon SC, Goldenberg SL, Carleton B, Brophy JM. Testosterone therapy and risk of myocardial infarction: a pharmacoepidemiologic study. Pharmacotherapy. 2015;35:72–8.

    Article  CAS  Google Scholar 

  64. Tan RS, Cook KR, Reilly WG. Myocardial infarction and stroke risk in young healthy men treated with injectable testosterone. Int J Endocrinol. 2015;2015: 970750.

    Article  Google Scholar 

  65. Sharma R, Oni OA, Gupta K, Chen G, Sharma M, Dawn B, et al. Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur Heart J. 2015;36:2706–15.

    Article  Google Scholar 

  66. Li H, Mitchell L, Zhang X, Heiselman D, Motsko S. Testosterone therapy and risk of acute myocardial infarction in hypogonadal men: an administrative health care claims study. J Sex Med. 2017;14:1307–17.

    Article  CAS  Google Scholar 

  67. Oni OA, Dehkordi SHH, Jazayeri MA, Sharma R, Sharma M, Masoomi R, et al. Relation of testosterone normalization to mortality and myocardial infarction in men with previous myocardial infarction. Am J Cardiol. 2019;124:1171–8.

    Article  CAS  Google Scholar 

  68. Alexander GC, Iyer G, Lucas E, Lin D, Singh S. Cardiovascular risks of exogenous testosterone use among men: a systematic review and meta-analysis. Am J Med. 2017;130:293–305.

    Article  CAS  Google Scholar 

  69. Lee JH, Shah PH, Uma D, Salvi DJ, Rabbani R, Hamid P. Testosterone replacement therapy in hypogonadal men and myocardial infarction risk: Systematic review and meta-analysis. Cureus. 2021;13: e17475.

    Google Scholar 

  70. Onasanya O, Iyer G, Lucas E, Lin D, Singh S, Alexander GC. Association between exogenous testosterone and cardiovascular events: an overview of systematic reviews. Lancet Diabetes Endocrinol. 2016;4:943–56.

    Article  CAS  Google Scholar 

  71. Abbott RD, Launer LJ, Rodriguez BL, Ross GW, Wilson PW, Masaki KH, et al. Serum estradiol and risk of stroke in elderly men. Neurology. 2007;68:563–8.

    Article  CAS  Google Scholar 

  72. Yeap BB, Hyde Z, Almeida OP, Norman PE, Chubb SA, Jamrozik K, et al. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab. 2009;94:2353–9.

    Article  CAS  Google Scholar 

  73. Shores MM, Arnold AM, Biggs ML, Longstreth WT Jr, Smith NL, Kizer JR, et al. Testosterone and dihydrotestosterone and incident ischaemic stroke in men in the Cardiovascular Health Study. Clin Endocrinol (Oxf). 2014;81:746–53.

    Article  CAS  Google Scholar 

  74. Holmegard HN, Nordestgaard BG, Jensen GB, Tybjærg-Hansen A, Benn M. Sex hormones and ischemic stroke: a prospective cohort study and meta-analyses. J Clin Endocrinol Metab. 2016;101:69–78.

    Article  CAS  Google Scholar 

  75. Zeller T, Schnabel RB, Appelbaum S, Ojeda F, Berisha F, Schulte-Steinberg B, et al. Low testosterone levels are predictive for incident atrial fibrillation and ischaemic stroke in men, but protective in women - results from the FINRISK study. Eur J Prev Cardiol. 2018;25:1133–9.

    Article  Google Scholar 

  76. Schooling CM, Luo S, Au Yeung SL, Thompson DJ, Karthikeyan S, Bolton TR, et al. Genetic predictors of testosterone and their associations with cardiovascular disease and risk factors: a Mendelian randomization investigation. Int J Cardiol. 2018;267:171–6.

    Article  Google Scholar 

  77. Roetker NS, MacLehose RF, Hoogeveen RC, Ballantyne CM, Basu S, Cushman M, et al. Prospective study of endogenous hormones and incidence of venous thromboembolism: The Atherosclerosis Risk in Communities study. Thromb Haemost. 2018;118:1940–50.

    Article  Google Scholar 

  78. Holmegard HN, Nordestgaard BG, Schnohr P, Tybjaerg-Hansen A, Benn M. Endogenous sex hormones and risk of venous thromboembolism in women and men. J Thromb Haemost. 2014;12:297–305.

    Article  CAS  Google Scholar 

  79. Nethander M, Quester J, Vandenput L, Ohlsson C. Association of genetically predicted serum estradiol with risk of thromboembolism in men: a Mendelian randomization study. J Clin Endocrinol Metab. 2021;106:e3078–86.

    Article  Google Scholar 

  80. Chang S, Biltoft D, Skakkebæk A, Fedder J, Bojesen A, Bor MV, et al. Testosterone treatment and association with thrombin generation and coagulation inhibition in Klinefelter syndrome: a cross-sectional study. Thromb Res. 2019;182:175–81.

    Article  CAS  Google Scholar 

  81. Indirli R, Ferrante E, Scalambrino E, Profka E, Clerici M, Lettera T, et al. Procoagulant imbalance in Klinefelter syndrome assessed by thrombin generation assay and whole-blood thromboelastometry. J Clin Endocrinol Metab. 2021;106:e1660–72.

    Article  Google Scholar 

  82. Ayele HT, Brunetti VC, Renoux C, Tagalakis V, Filion KB. Testosterone replacement therapy and the risk of venous thromboembolism: a systematic review and meta-analysis of randomized controlled trials. Thromb Res. 2021;199:123–31.

    Article  CAS  Google Scholar 

  83. Walker RF, Zakai NA, MacLehose RF, Cowan LT, Adam TJ, Alonso A, et al. Association of testosterone therapy with risk of venous thromboembolism among men with and without hypogonadism. JAMA Intern Med. 2020;180:190–7.

    Article  CAS  Google Scholar 

  84. Li H, Benoit K, Wang W, Motsko S. Association between use of exogenous testosterone therapy and risk of venous thrombotic events among exogenous testosterone treated and untreated men with hypogonadism. J Urol. 2016;195:1065–72.

    Article  CAS  Google Scholar 

  85. Martinez C, Suissa S, Rietbrock S, Katholing A, Freedman B, Cohen AT, et al. Testosterone treatment and risk of venous thromboembolism: Population based case-control study. BMJ. 2016;355:i5968.

  86. Baillargeon J, Urban RJ, Morgentaler A, Glueck CJ, Baillargeon G. Risk of venous thromboembolism in men receiving testosterone therapy. Mayo Clin Proc. 2015;90:1038–45.

    Article  CAS  Google Scholar 

  87. Sharma R, Oni OA, Chen G, Sharma M, Dawn B, Sharma R, et al. Association between testosterone replacement therapy and the incidence of DVT and pulmonary embolism: a retrospective cohort study of the Veterans Administration database. Chest. 2016;150:563–71.

    Article  Google Scholar 

  88. Houghton DE, Alsawas M, Barrioneuvo P, Tello M, Farah W, Beuschel B, et al. Testosterone therapy and venous thromboembolism: a systematic review and meta-analysis. Thromb Res. 2018;172:94–103.

    Article  CAS  Google Scholar 

  89. Zhao D, Guallar E, Ballantyne CM, Post WS, Ouyang P, Vaidya D, et al. Sex hormones and incident heart failure in men and postmenopausal women: The Atherosclerosis Risk in Communities study. J Clin Endocrinol Metab. 2020;105:e3798–807.

    Article  Google Scholar 

  90. Schäfer S, Aydin MA, Appelbaum S, Kuulasmaa K, Palosaari T, Ojeda F, et al. Low testosterone concentrations and prediction of future heart failure in men and in women: Evidence from the large FINRISK97 study. ESC Heart Fail. 2021;8:2485–91.

    Article  Google Scholar 

  91. Tao J, Liu X, Bai W. Testosterone supplementation in patients with chronic heart failure: a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2020;11:110.

    Article  Google Scholar 

  92. Lai J, Zhou D, Xia S, Shang Y, Want L, Zheng L, et al. Reduced testosterone levels in males with lone atrial fibrillation. Clin Cardiol. 2009;32:43–6.

    Article  Google Scholar 

  93. Magnani JW, Moser CB, Murabito JM, Sullivan LM, Wang N, Ellinor PT, et al. Association of sex hormones, aging, and atrial fibrillation in men: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2014;7:307–12.

    Article  CAS  Google Scholar 

  94. Rosenberg MA, Shores MM, Matsumoto AM, Bůžková P, Lange LA, Kronmal RA, et al. Serum androgens and risk of atrial fibrillation in older men: the Cardiovascular Health Study. Clin Cardiol. 2018;41:830–6.

    Article  Google Scholar 

  95. O’Neal WT, Nazarian S, Alonso A, Heckbert SR, Vaccarino V, Soliman EZ. Sex hormones and the risk of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA). Endocrine. 2017;58:91–6.

    Article  CAS  Google Scholar 

  96. Berger D, Folsom AR, Schreiner PJ, Chen LY, Michos ED, O’Neal WT, et al. Plasma total testosterone and risk of incident atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Maturitas. 2019;125:5–10.

    Article  CAS  Google Scholar 

  97. Sharma R, Oni OA, Gupta K, Sharma M, Sharma R, Singh V, et al. Normalization of testosterone levels after testosterone replacement therapy is associated with decreased incidence of atrial fibrillation. J Am Heart Assoc. 2017;6: e004880.

    Article  Google Scholar 

  98. Anawalt BD. Diagnosis and management of anabolic androgenic steroid use. J Clin Endocrinol Metab. 2019;104:2490–500.

    Article  Google Scholar 

  99. Pope HG Jr, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S. Adverse health consequences of performance-enhancing drugs: an Endocrine Society scientific statement. Endocr Rev. 2014;35:341–75.

    Article  CAS  Google Scholar 

  100. The Coronary Drug Project: Findings Leading to discontinuation of the 2.5-mg/day estrogen group. JAMA.1973;226:652–7.

  101. Idan A, Griffiths KA, Harwood DT, Seibel MJ, Turner L, Conway AJ, et al. Long-term effects of dihydrotestosterone treatment on prostate growth in healthy, middle-aged men without prostate disease: a randomized, placebo-controlled trial. Ann Intern Med. 2010;153:621–32.

    Article  Google Scholar 

  102. Soufir JC, Meduri G, Ziyyat A. Spermatogenetic inhibition in men taking a combination of oral medroxyprogesterone acetate and percutaneous testosterone as a male contraceptive method. Hum Reprod. 2011;26:1708–14.

    Article  CAS  Google Scholar 

  103. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia in normal men. Lancet. 1990;336:955–9.

  104. World Health Organization Task Force on Methods for the Regulation of Male Fertility. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil Steril. 1996;65:821–9.

  105. Turner L, Conway AJ, Jimenez M, Liu PY, Forbes E, McLachlan RI, et al. Contraceptive efficacy of a depot progestin and androgen combination in men. J Clin Endocrinol Metab. 2003;88:4659–67.

    Article  CAS  Google Scholar 

  106. Gu YQ, Wang XH, Xu D, Peng L, Cheng LF, Huang MK, et al. A multicenter contraceptive efficacy study of injectable testosterone undecanoate in healthy Chinese men. J Clin Endocrinol Metab. 2003;88:562–8.

    Article  CAS  Google Scholar 

  107. Gu Y, Liang X, Wu W, Liu M, Song S, Cheng L, et al. Multicenter contraceptive efficacy trial of injectable testosterone undecanoate in Chinese men. J Clin Endocrinol Metab. 2009;94:1910–5.

    Article  CAS  Google Scholar 

  108. Behre HM, Zitzmann M, Anderson RA, Handelsman DJ, Lestari SW, McLachlan RI, et al. Efficacy and safety of an injectable combination hormonal contraceptive for men. J Clin Endocrinol Metab. 2016;101:4779–87.

    Article  CAS  Google Scholar 

  109. Gagliano-Jucá T, Basaria S. Testosterone replacement therapy and cardiovascular risk. Nat Rev Cardiol. 2019;16:555–74.

    Article  Google Scholar 

  110. Jones TH, Kelly DM. Randomized controlled trials - mechanistic studies of testosterone and the cardiovascular system. Asian J Androl. 2018;20:120–30.

    Article  CAS  Google Scholar 

Download references

Funding

Drs. Thirumalai and Anawalt receive funding from the NIH-NICHD (HHSN275000251), and Dr. Anawalt is the site PI on NIH-RO1HL1343653 (Kanias, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley D. Anawalt.

Ethics declarations

Conflicts of interest

Drs. Thirumalai and Anawalt report no commercial or financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumalai, A., Anawalt, B.D. Relationships between endogenous and exogenous testosterone and cardiovascular disease in men. Rev Endocr Metab Disord 23, 1305–1322 (2022). https://doi.org/10.1007/s11154-022-09752-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09752-7

Keywords

Navigation