Skip to main content

Advertisement

Log in

Bone health in ageing men

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Osteoporosis does not only affect postmenopausal women, but also ageing men. The burden of disease is projected to increase with higher life expectancy both in females and males. Importantly, osteoporotic men remain more often undiagnosed and untreated compared to women. Sex steroid deficiency is associated with bone loss and increased fracture risk, and circulating sex steroid levels have been shown to be associated both with bone mineral density and fracture risk in elderly men. However, in contrast to postmenopausal osteoporosis, the contribution of relatively small decrease of circulating sex steroid concentrations in the ageing male to the development of osteoporosis and related fractures, is probably only minor. In this review we provide several clinical and preclinical arguments in favor of a ‘bone threshold’ for occurrence of hypogonadal osteoporosis, corresponding to a grade of sex steroid deficiency that in general will not occur in many elderly men. Testosterone replacement therapy has been shown to increase bone mineral density in men, however data in osteoporotic ageing males are scarce, and evidence on fracture risk reduction is lacking. We conclude that testosterone replacement therapy should not be used as a sole bone-specific treatment in osteoporotic elderly men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

not applicable.

Code Availability

not applicable.

Abbreviations

25(OH)D:

25-hydroxyvitaminD

aBMD:

areal bone mineral density

ADT:

androgen deprivation therapy

AR:

androgen receptor

BioE2:

bioavailable estradiol

BioT:

bioavailable testosterone

BMD:

bone mineral density

BMI:

body mass index

BTM:

bone turnover marker

DHT:

dihydrotestosterone

DXA:

dual X-ray absorptiometry

E1:

estrone

E2:

estradiol

EMAS:

European male ageing study

ERɑ:

estrogen receptor alpha

FN:

femoral neck

FRAX:

Fracture Risk Assessment Tool

IA:

immunoassay

LOH:

late onset hypogonadism

LS:

lumbar spine

MOF:

major osteoporotic fracture

MrOS:

osteoporotic fractures in men study

MS:

mass spectrometry

PBM:

peak bone mass

pQCT:

peripheral quantitative computed tomography

QCT:

quantitative computed tomography

RCT:

randomized controlled trial

SARM:

selective androgen receptor modulator

SD:

standard deviation

SERM:

selective estrogen receptor modulator

SHBG:

sex hormone binding globulin

SNP:

single nucleotide polymorphism

T:

testosterone

TBS:

trabecular bone score

TH:

total hip

TRT:

testosterone replacement therapy

vBMD:

volumetric bone mineral density

References

  1. Looker AC, Sarafrazi Isfahani N, Fan B, Shepherd JA. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos Int. 2017;28(6):1979–88. doi:https://doi.org/10.1007/s00198-017-3996-1.

    Article  CAS  Google Scholar 

  2. Wright NC, Saag KG, Dawson-Hughes B, Khosla S, Siris ES. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the USA. Osteoporos Int. 2017;28(4):1225–32. doi:https://doi.org/10.1007/s00198-016-3865-3.

    Article  CAS  Google Scholar 

  3. Wright NC, Saag KG, Dawson-Hughes B, Khosla S, Siris ES. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the United States: supplementary presentation. Osteoporos Int. 2017;28(11):3283–4. doi:https://doi.org/10.1007/s00198-017-4207-9.

    Article  CAS  Google Scholar 

  4. Siris ES, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus MJ, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–43. doi:https://doi.org/10.1007/s00198-014-2655-z.

    Article  CAS  Google Scholar 

  5. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288(15):1889–97. doi:https://doi.org/10.1001/jama.288.15.1889.

    Article  Google Scholar 

  6. Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES, et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006;21(10):1550–6. doi:https://doi.org/10.1359/jbmr.060708.

    Article  Google Scholar 

  7. Cawthon PM, Ewing SK, Mackey DC, Fink HA, Cummings SR, Ensrud KE, et al. Change in hip bone mineral density and risk of subsequent fractures in older men. J Bone Miner Res. 2012;27(10):2179–88. doi:https://doi.org/10.1002/jbmr.1671.

    Article  Google Scholar 

  8. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. doi:https://doi.org/10.1007/s00198-006-0172-4.

    Article  CAS  Google Scholar 

  9. Cosman F, Krege JH, Looker AC, Schousboe JT, Fan B, Sarafrazi Isfahani N, et al. Spine fracture prevalence in a nationally representative sample of US women and men aged ≥ 40 years: results from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Osteoporos Int. 2017;28(6):1857–66. doi:https://doi.org/10.1007/s00198-017-3948-9.

    Article  CAS  Google Scholar 

  10. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA. 2007;297(4):387–94. doi:https://doi.org/10.1001/jama.297.4.387.

    Article  CAS  Google Scholar 

  11. Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV. Residual lifetime risk of fractures in women and men. J Bone Miner Res. 2007;22(6):781–8. doi:https://doi.org/10.1359/jbmr.070315.

    Article  Google Scholar 

  12. Ahmed LA, Schirmer H, Bjørnerem A, Emaus N, Jørgensen L, Størmer J, et al. The gender- and age-specific 10-year and lifetime absolute fracture risk in Tromsø, Norway. Eur J Epidemiol. 2009;24(8):441–8. doi:https://doi.org/10.1007/s10654-009-9353-8.

    Article  Google Scholar 

  13. Lippuner K, Johansson H, Kanis JA, Rizzoli R. Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women. Osteoporos Int. 2009;20(7):1131–40. doi:https://doi.org/10.1007/s00198-008-0779-8.

    Article  CAS  Google Scholar 

  14. Hopkins RB, Pullenayegum E, Goeree R, Adachi JD, Papaioannou A, Leslie WD, et al. Estimation of the lifetime risk of hip fracture for women and men in Canada. Osteoporos Int. 2012;23(3):921–7. doi:https://doi.org/10.1007/s00198-011-1652-8.

    Article  CAS  Google Scholar 

  15. Abtahi S, Driessen JHM, Vestergaard P, van den Bergh J, Boonen A, de Vries F, et al. Secular trends in major osteoporotic fractures among 50 + adults in Denmark between 1995 and 2010. Osteoporos Int. 2019;30(11):2217–23. doi:https://doi.org/10.1007/s00198-019-05109-0.

    Article  Google Scholar 

  16. Kim KM, Moon JH, Choi SH, Lim S, Lim JY, Kim KW, et al. Lower baseline value and greater decline in BMD as independent risk factors for mortality in community dwelling elderly. Bone. 2019;121:204–11. doi:https://doi.org/10.1016/j.bone.2019.01.017.

    Article  Google Scholar 

  17. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513–21. doi:https://doi.org/10.1001/jama.2009.50.

    Article  CAS  Google Scholar 

  18. Cawthon PM, Patel S, Ewing SK, Lui LY, Cauley JA, Lyons JG, et al. Bone Loss at the Hip and Subsequent Mortality in Older Men: The Osteoporotic Fractures in Men (MrOS) Study. JBMR Plus. 2017;1(1):31–5. doi:https://doi.org/10.1002/jbm4.10006.

    Article  Google Scholar 

  19. Bliuc D, Tran T, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Secular Changes in Postfracture Outcomes Over 2 Decades in Australia: A Time-Trend Comparison of Excess Postfracture Mortality in Two Birth Controls Over Two Decades. J Clin Endocrinol Metab. 2016;101(6):2475–83. doi:https://doi.org/10.1210/jc.2016-1514.

    Article  CAS  Google Scholar 

  20. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82. doi:https://doi.org/10.1016/S0140-6736(98)09075-8.

    Article  CAS  Google Scholar 

  21. Katsoulis M, Benetou V, Karapetyan T, Feskanich D, Grodstein F, Pettersson-Kymmer U, et al. Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med. 2017;281(3):300–10. doi:https://doi.org/10.1111/joim.12586.

    Article  CAS  Google Scholar 

  22. Haentjens P, Magaziner J, Colón-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010;152(6):380–90. doi:https://doi.org/10.7326/0003-4819-152-6-201003160-00008.

    Article  Google Scholar 

  23. Ho-Le TP, Tran TS, Bliuc D, Pham HM, Frost SA, Center JR, et al. Epidemiological transition to mortality and refracture following an initial fracture. Elife. 2021;10. doi:https://doi.org/10.7554/eLife.61142.

  24. Trombetti A, Herrmann F, Hoffmeyer P, Schurch MA, Bonjour JP, Rizzoli R. Survival and potential years of life lost after hip fracture in men and age-matched women. Osteoporos Int. 2002;13(9):731–7. doi:https://doi.org/10.1007/s001980200100.

    Article  CAS  Google Scholar 

  25. Chen W, Simpson JM, March LM, Blyth FM, Bliuc D, Tran T, et al. Comorbidities Only Account for a Small Proportion of Excess Mortality After Fracture: A Record Linkage Study of Individual Fracture Types. J Bone Miner Res. 2018;33(5):795–802. doi:https://doi.org/10.1002/jbmr.3374.

    Article  Google Scholar 

  26. Riska L, Forsén BS, Omsland L, Søgaard TK, Meyer AJ, Holvik HE. K. Does the Association of Comorbidity with 1-Year Mortality After Hip Fracture Differ According to Gender? The Norwegian Epidemiologic Osteoporosis Studies (NOREPOS). J Am Geriatr Soc. 2018;66(3):553–8. doi:https://doi.org/10.1111/jgs.15207.

    Article  Google Scholar 

  27. Feldstein A, Elmer PJ, Orwoll E, Herson M, Hillier T. Bone mineral density measurement and treatment for osteoporosis in older individuals with fractures: a gap in evidence-based practice guideline implementation. Arch Intern Med. 2003;163(18):2165–72. doi:https://doi.org/10.1001/archinte.163.18.2165.

    Article  Google Scholar 

  28. Feldstein AC, Nichols G, Orwoll E, Elmer PJ, Smith DH, Herson M, et al. The near absence of osteoporosis treatment in older men with fractures. Osteoporos Int. 2005;16(8):953–62. doi:https://doi.org/10.1007/s00198-005-1950-0.

    Article  Google Scholar 

  29. Papaioannou A, Kennedy CC, Ioannidis G, Gao Y, Sawka AM, Goltzman D, et al. The osteoporosis care gap in men with fragility fractures: the Canadian Multicentre Osteoporosis Study. Osteoporos Int. 2008;19(4):581–7. doi:https://doi.org/10.1007/s00198-007-0483-0.

    Article  CAS  Google Scholar 

  30. Colón-Emeric CS, Pieper CF, Van Houtven CH, Grubber JM, Lyles KW, Lafleur J, et al. Limited Osteoporosis Screening Effectiveness Due to Low Treatment Rates in a National Sample of Older Men. Mayo Clin Proc. 2018;93(12):1749-59. doi: https://doi.org/10.1016/j.mayocp.2018.06.024.

  31. Curtis JR, McClure LA, Delzell E, Howard VJ, Orwoll E, Saag KG, et al. Population-based fracture risk assessment and osteoporosis treatment disparities by race and gender. J Gen Intern Med. 2009;24(8):956–62. doi:https://doi.org/10.1007/s11606-009-1031-8.

    Article  Google Scholar 

  32. Nurmi-Lüthje I, Sund R, Juntunen M, Lüthje P. Post-hip fracture use of prescribed calcium plus vitamin D or vitamin D supplements and antiosteoporotic drugs is associated with lower mortality: a nationwide study in Finland. J Bone Miner Res. 2011;26(8):1845–53. doi:https://doi.org/10.1002/jbmr.375.

    Article  CAS  Google Scholar 

  33. Narla RR, Hirano LA, Lo SHY, Anawalt BD, Phelan EA, Matsumoto AM. Suboptimal osteoporosis evaluation and treatment in older men with and without additional high-risk factors for fractures. J Investig Med. 2019;67(4):743–9. doi:https://doi.org/10.1136/jim-2018-000907.

    Article  Google Scholar 

  34. Kiebzak GM, Beinart GA, Perser K, Ambrose CG, Siff SJ, Heggeness MH. Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med. 2002;162(19):2217–22. doi:https://doi.org/10.1001/archinte.162.19.2217.

    Article  Google Scholar 

  35. Solomon DH, Johnston SS, Boytsov NN, McMorrow D, Lane JM, Krohn KD. Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J Bone Miner Res. 2014;29(9):1929–37. doi:https://doi.org/10.1002/jbmr.2202.

    Article  Google Scholar 

  36. Hu J, Aprikian AG, Vanhuyse M, Dragomir A. Contemporary Population-Based Analysis of Bone Mineral Density Testing in Men Initiating Androgen Deprivation Therapy for Prostate Cancer. J Natl Compr Canc Netw. 2020;18(10):1374–81. doi:https://doi.org/10.6004/jnccn.2020.7576.

    Article  CAS  Google Scholar 

  37. Holt A, Khan MA, Gujja S, Govindarajan R. Utilization of bone densitometry for prediction and administration of bisphosphonates to prevent osteoporosis in patients with prostate cancer without bone metastases receiving antiandrogen therapy. Cancer Manag Res. 2015;7:13–8. doi:https://doi.org/10.2147/CMAR.S74116.

    Article  Google Scholar 

  38. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75. doi:https://doi.org/10.1359/jbmr.061113.

    Article  Google Scholar 

  39. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136. doi:https://doi.org/10.1007/s11657-013-0136-1.

    Article  CAS  Google Scholar 

  40. Lewiecki EM. Imaging technologies for assessment of skeletal health in men. Curr Osteoporos Rep. 2013;11(1):1–10. doi:https://doi.org/10.1007/s11914-012-0128-x.

    Article  Google Scholar 

  41. Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK. Sex- and Site-Specific Normative Data Curves for HR-pQCT. J Bone Miner Res. 2016;31(11):2041–7. doi:https://doi.org/10.1002/jbmr.2873.

  42. Hansen S, Shanbhogue V, Folkestad L, Nielsen MM, Brixen K. Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int. 2014;94(3):269–81. doi:https://doi.org/10.1007/s00223-013-9808-5.

    Article  CAS  Google Scholar 

  43. Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, et al. Sex steroid actions in male bone. Endocr Rev. 2014;35(6):906–60. doi:https://doi.org/10.1210/er.2014-1024.

    Article  CAS  Google Scholar 

  44. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Low width of tubular bones is associated with increased risk of fragility fracture in elderly men–the MINOS study. Bone. 2006;38(4):595–602. doi:https://doi.org/10.1016/j.bone.2005.09.004.

    Article  Google Scholar 

  45. Hernandez CJ, Beaupré GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7. doi:https://doi.org/10.1007/s00198-003-1454-8.

    Article  CAS  Google Scholar 

  46. Boot AM, de Ridder MA, van der Sluis IM, van Slobbe I, Krenning EP, Keizer-Schrama SM. Peak bone mineral density, lean body mass and fractures. Bone. 2010;46(2):336–41. doi:https://doi.org/10.1016/j.bone.2009.10.003.

    Article  Google Scholar 

  47. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15(4):263–73. doi:https://doi.org/10.1007/s00198-003-1542-9.

    Article  Google Scholar 

  48. Lee EY, Kim D, Kim KM, Kim KJ, Choi HS, Rhee Y, et al. Age-related bone mineral density patterns in Koreans (KNHANES IV). J Clin Endocrinol Metab. 2012;97(9):3310–8. doi:https://doi.org/10.1210/jc.2012-1488.

    Article  CAS  Google Scholar 

  49. Nordström P, Neovius M, Nordström A. Early and rapid bone mineral density loss of the proximal femur in men. J Clin Endocrinol Metab. 2007;92(5):1902–8. doi:https://doi.org/10.1210/jc.2006-2613.

    Article  CAS  Google Scholar 

  50. Lauretani F, Bandinelli S, Griswold ME, Maggio M, Semba R, Guralnik JM, et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res. 2008;23(3):400–8. doi:https://doi.org/10.1359/jbmr.071103.

    Article  Google Scholar 

  51. Shanbhogue VV, Brixen K, Hansen S. Age- and Sex-Related Changes in Bone Microarchitecture and Estimated Strength: A Three-Year Prospective Study Using HRpQCT. J Bone Miner Res. 2016;31(8):1541–9. doi:https://doi.org/10.1002/jbmr.2817.

    Article  Google Scholar 

  52. Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, et al. Structural adaptations to bone loss in aging men and women. Bone. 2006;38(1):112–8. doi:https://doi.org/10.1016/j.bone.2005.07.025.

    Article  Google Scholar 

  53. Nirody JA, Cheng KP, Parrish RM, Burghardt AJ, Majumdar S, Link TM, et al. Spatial distribution of intracortical porosity varies across age and sex. Bone. 2015;75:88–95. doi:https://doi.org/10.1016/j.bone.2015.02.006.

    Article  Google Scholar 

  54. Ward KA, Pye SR, Adams JE, Boonen S, Vanderschueren D, Borghs H, et al. Influence of age and sex steroids on bone density and geometry in middle-aged and elderly European men. Osteoporos Int. 2011;22(5):1513–23. doi:https://doi.org/10.1007/s00198-010-1437-5.

    Article  CAS  Google Scholar 

  55. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31. doi:https://doi.org/10.1359/JBMR.050916.

    Article  Google Scholar 

  56. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23(2):205–14. doi:https://doi.org/10.1359/jbmr.071020.

    Article  Google Scholar 

  57. Pignolo RJ, Law SF, Chandra A. Bone, Aging. Cellular Senescence, and Osteoporosis. JBMR Plus. 2021;5(4):e10488. doi:https://doi.org/10.1002/jbm4.10488.

    Article  Google Scholar 

  58. Khosla S, Melton LJ, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441–51. doi:https://doi.org/10.1002/jbmr.262.

    Article  CAS  Google Scholar 

  59. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300. doi:https://doi.org/10.1210/er.2009-0024.

    Article  CAS  Google Scholar 

  60. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97. doi:https://doi.org/10.1074/jbc.M702810200.

    Article  CAS  Google Scholar 

  61. Wiren KM, Toombs AR, Semirale AA, Zhang X. Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio. Bone. 2006;38(5):637–51. doi:https://doi.org/10.1016/j.bone.2005.10.029.

    Article  CAS  Google Scholar 

  62. Ucer S, Iyer S, Kim HN, Han L, Rutlen C, Allison K, et al. The Effects of Aging and Sex Steroid Deficiency on the Murine Skeleton Are Independent and Mechanistically Distinct. J Bone Miner Res. 2017;32(3):560–74. doi:https://doi.org/10.1002/jbmr.3014.

    Article  CAS  Google Scholar 

  63. Farr JN, Rowsey JL, Eckhardt BA, Thicke BS, Fraser DG, Tchkonia T, et al. Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. J Bone Miner Res. 2019;34(8):1407–18. doi:https://doi.org/10.1002/jbmr.3729.

    Article  CAS  Google Scholar 

  64. Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab. 2004;89(12):5898–907. doi:https://doi.org/10.1210/jc.2004-1717.

    Article  CAS  Google Scholar 

  65. MacDonald PC, Madden JD, Brenner PF, Wilson JD, Siiteri PK. Origin of estrogen in normal men and in women with testicular feminization. J Clin Endocrinol Metab. 1979;49(6):905–16. doi:https://doi.org/10.1210/jcem-49-6-905.

    Article  CAS  Google Scholar 

  66. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev. 2017;97(1):135–87. doi:https://doi.org/10.1152/physrev.00033.2015.

    Article  Google Scholar 

  67. Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res. 2006;21(4):576–85. doi:https://doi.org/10.1359/jbmr.060103.

    Article  CAS  Google Scholar 

  68. Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med. 1987;106(3):354–61. doi:https://doi.org/10.7326/0003-4819-106-3-.

    Article  CAS  Google Scholar 

  69. Greenspan SL, Neer RM, Ridgway EC, Klibanski A. Osteoporosis in men with hyperprolactinemic hypogonadism. Ann Intern Med. 1986;104(6):777–82. doi:https://doi.org/10.7326/0003-4819-104-6-777.

    Article  CAS  Google Scholar 

  70. Greenspan SL, Coates P, Sereika SM, Nelson JB, Trump DL, Resnick NM. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. J Clin Endocrinol Metab. 2005;90(12):6410–7. doi:https://doi.org/10.1210/jc.2005-0183.

    Article  CAS  Google Scholar 

  71. Wadhwa VK, Weston R, Mistry R, Parr NJ. Long-term changes in bone mineral density and predicted fracture risk in patients receiving androgen-deprivation therapy for prostate cancer, with stratification of treatment based on presenting values. BJU Int. 2009;104(6):800–5. doi:https://doi.org/10.1111/j.1464-410X.2009.08483.x.

    Article  CAS  Google Scholar 

  72. Hamilton EJ, Ghasem-Zadeh A, Gianatti E, Lim-Joon D, Bolton D, Zebaze R, et al. Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy. J Clin Endocrinol Metab. 2010;95(12):E456-63. doi:https://doi.org/10.1210/jc.2010-0902.

    Article  CAS  Google Scholar 

  73. De Landtsheer A, Bekaert L, David K, Marcq P, Jeandarme I, Decallonne B, et al. The impact of androgen deprivation therapy on bone mineral density in men treated for paraphilic disorder: A retrospective cohort study. Andrology. 2021. doi:https://doi.org/10.1111/andr.13142.

    Article  Google Scholar 

  74. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352(2):154–64. doi:https://doi.org/10.1056/NEJMoa041943.

    Article  CAS  Google Scholar 

  75. Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005;23(31):7897–903. doi:https://doi.org/10.1200/JCO.2004.00.6908.

    Article  CAS  Google Scholar 

  76. Smith MR, Boyce SP, Moyneur E, Duh MS, Raut MK, Brandman J. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175(1):136–9. https://doi.org/10.1016/S0022-5347(05)00033-9. discussion 9. doi.

    Article  CAS  Google Scholar 

  77. Wang A, Obertová Z, Brown C, Karunasinghe N, Bishop K, Ferguson L, et al. Risk of fracture in men with prostate cancer on androgen deprivation therapy: a population-based cohort study in New Zealand. BMC Cancer. 2015;15:837. doi:https://doi.org/10.1186/s12885-015-1843-3.

    Article  CAS  Google Scholar 

  78. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med. 1997;337(2):91–5. doi:https://doi.org/10.1056/NEJM199707103370204.

    Article  CAS  Google Scholar 

  79. Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med. 1998;339(9):599–603. doi:https://doi.org/10.1056/NEJM199808273390905.

    Article  CAS  Google Scholar 

  80. Rochira V, Carani C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol. 2009;5(10):559–68. doi:https://doi.org/10.1038/nrendo.2009.176.

    Article  CAS  Google Scholar 

  81. Bouillon R, Bex M, Vanderschueren D, Boonen S. Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab. 2004;89(12):6025–9. doi:https://doi.org/10.1210/jc.2004-0602.

    Article  CAS  Google Scholar 

  82. Aguirre LE, Colleluori G, Fowler KE, Jan IZ, Villareal K, Qualls C, et al. High aromatase activity in hypogonadal men is associated with higher spine bone mineral density, increased truncal fat and reduced lean mass. Eur J Endocrinol. 2015;173(2):167–74. doi:https://doi.org/10.1530/EJE-14-1103.

    Article  CAS  Google Scholar 

  83. Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab. 2003;88(7):3075–81. doi:https://doi.org/10.1210/jc.2002-021691.

    Article  CAS  Google Scholar 

  84. Eriksson AL, Lorentzon M, Vandenput L, Labrie F, Lindersson M, Syvänen AC, et al. Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. J Clin Endocrinol Metab. 2009;94(3):1033–41. doi:https://doi.org/10.1210/jc.2008-1283.

    Article  CAS  Google Scholar 

  85. Stolk L, van Meurs JB, Jhamai M, Arp PP, van Leeuwen JP, Hofman A, et al. The catechol-O-methyltransferase Met158 low-activity allele and association with nonvertebral fracture risk in elderly men. J Clin Endocrinol Metab. 2007;92(8):3206–12. doi:https://doi.org/10.1210/jc.2006-2136.

    Article  CAS  Google Scholar 

  86. Eriksson AL, Mellström D, Lorentzon M, Orwoll ES, Redlund-Johnell I, Grundberg E, et al. The COMT val158met polymorphism is associated with prevalent fractures in Swedish men. Bone. 2008;42(1):107–12. doi:https://doi.org/10.1016/j.bone.2007.08.045.

    Article  CAS  Google Scholar 

  87. Eriksson AL, Perry JRB, Coviello AD, Delgado GE, Ferrucci L, Hoffman AR, et al. Genetic Determinants of Circulating Estrogen Levels and Evidence of a Causal Effect of Estradiol on Bone Density in Men. J Clin Endocrinol Metab. 2018;103(3):991–1004. doi:https://doi.org/10.1210/jc.2017-02060.

    Article  Google Scholar 

  88. Burnett-Bowie SA, McKay EA, Lee H, Leder BZ. Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. J Clin Endocrinol Metab. 2009;94(12):4785–92. doi:https://doi.org/10.1210/jc.2009-0739.

    Article  CAS  Google Scholar 

  89. Dias JP, Melvin D, Simonsick EM, Carlson O, Shardell MD, Ferrucci L, et al. Effects of aromatase inhibition vs. testosterone in older men with low testosterone: randomized-controlled trial. Andrology. 2016;4(1):33–40. doi:https://doi.org/10.1111/andr.12126.

    Article  CAS  Google Scholar 

  90. Aguirre LE, Colleluori G, Robbins D, Dorin R, Shah VO, Chen R, et al. Bone and body composition response to testosterone therapy vary according to polymorphisms in the CYP19A1 gene. Endocrine. 2019;65(3):692–706. doi:https://doi.org/10.1007/s12020-019-02008-6.

    Article  CAS  Google Scholar 

  91. King TFJ, Wat WZM, Creighton SM, Conway GS. Bone mineral density in complete androgen insensitivity syndrome and the timing of gonadectomy. Clin Endocrinol (Oxf). 2017;87(2):136–40. doi:https://doi.org/10.1111/cen.13368.

    Article  CAS  Google Scholar 

  92. Han TS, Goswami D, Trikudanathan S, Creighton SM, Conway GS. Comparison of bone mineral density and body proportions between women with complete androgen insensitivity syndrome and women with gonadal dysgenesis. Eur J Endocrinol. 2008;159(2):179–85. doi:https://doi.org/10.1530/EJE-08-0166.

    Article  CAS  Google Scholar 

  93. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–61. doi:https://doi.org/10.1056/NEJM199410203311604.

    Article  CAS  Google Scholar 

  94. Mullin BH, Zhao JH, Brown SJ, Perry JRB, Luan J, Zheng HF, et al. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation. Hum Mol Genet. 2017;26(14):2791–802. doi:https://doi.org/10.1093/hmg/ddx174.

    Article  CAS  Google Scholar 

  95. Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, et al. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet. 2018;102(1):88–102. doi:https://doi.org/10.1016/j.ajhg.2017.12.005.

    Article  CAS  Google Scholar 

  96. Holliday KL, Pye SR, Thomson W, Boonen S, Borghs H, Vanderschueren D, et al. The ESR1 (6q25) locus is associated with calcaneal ultrasound parameters and radial volumetric bone mineral density in European men. PLoS ONE. 2011;6(7):e22037. doi:https://doi.org/10.1371/journal.pone.0022037.

    Article  CAS  Google Scholar 

  97. Huhtaniemi IT, Pye SR, Limer KL, Thomson W, O’Neill TW, Platt H, et al. Increased estrogen rather than decreased androgen action is associated with longer androgen receptor CAG repeats. J Clin Endocrinol Metab. 2009;94(1):277–84. doi:https://doi.org/10.1210/jc.2008-0848.

    Article  CAS  Google Scholar 

  98. Van Pottelbergh I, Lumbroso S, Goemaere S, Sultan C, Kaufman JM. Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men. Clin Endocrinol (Oxf). 2001;55(5):659–66. doi:https://doi.org/10.1046/j.1365-2265.2001.01403.x.

    Article  Google Scholar 

  99. Doran PM, Riggs BL, Atkinson EJ, Khosla S. Effects of raloxifene, a selective estrogen receptor modulator, on bone turnover markers and serum sex steroid and lipid levels in elderly men. J Bone Miner Res. 2001;16(11):2118–25. doi:https://doi.org/10.1359/jbmr.2001.16.11.2118.

    Article  CAS  Google Scholar 

  100. Uebelhart B, Herrmann F, Pavo I, Draper MW, Rizzoli R. Raloxifene treatment is associated with increased serum estradiol and decreased bone remodeling in healthy middle-aged men with low sex hormone levels. J Bone Miner Res. 2004;19(9):1518–24. doi:https://doi.org/10.1359/JBMR.040503.

    Article  CAS  Google Scholar 

  101. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, et al. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2(3):153–61. doi:https://doi.org/10.1007/s13539-011-0034-6.

    Article  Google Scholar 

  102. Wiepjes CM, de Jongh RT, de Blok CJ, Vlot MC, Lips P, Twisk JW, et al. Bone Safety During the First Ten Years of Gender-Affirming Hormonal Treatment in Transwomen and Transmen. J Bone Miner Res. 2019;34(3):447–54. doi:https://doi.org/10.1002/jbmr.3612.

    Article  CAS  Google Scholar 

  103. Bretherton I, Ghasem-Zadeh A, Leemaqz SY, Seeman E, Wang X, McFarlane T, et al. Bone Microarchitecture in Transgender Adults: a Cross Sectional Study. J Bone Miner Res. 2022. doi:https://doi.org/10.1002/jbmr.4497.

    Article  Google Scholar 

  104. Finkelstein JS, Lee H, Leder BZ, Burnett-Bowie SA, Goldstein DW, Hahn CW, et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest. 2016;126(3):1114–25. doi:https://doi.org/10.1172/JCI84137.

    Article  Google Scholar 

  105. Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS. Differential effects of androgens and estrogens on bone turnover in normal men. J Clin Endocrinol Metab. 2003;88(1):204–10. doi:https://doi.org/10.1210/jc.2002-021036.

    Article  CAS  Google Scholar 

  106. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–60. doi:https://doi.org/10.1172/JCI10942.

    Article  CAS  Google Scholar 

  107. Sanyal A, Hoey KA, Mödder UI, Lamsam JL, McCready LK, Peterson JM, et al. Regulation of bone turnover by sex steroids in men. J Bone Miner Res. 2008;23(5):705–14. doi:https://doi.org/10.1359/jbmr.071212.

    Article  CAS  Google Scholar 

  108. Finkelstein JS, Lee H, Burnett-Bowie SM, Darakananda K, Gentile EC, Goldstein DW, et al. Dose-Response Relationships Between Gonadal Steroids and Bone, Body Composition, and Sexual Function in Aging Men. J Clin Endocrinol Metab. 2020;105(8). doi:https://doi.org/10.1210/clinem/dgaa318.

  109. Vanderschueren D, Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R. An aged rat model of partial androgen deficiency: prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology. 2000;141(5):1642–7. doi:https://doi.org/10.1210/endo.141.5.7472.

    Article  CAS  Google Scholar 

  110. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98. doi:https://doi.org/10.1210/jcem.87.2.8201.

    Article  CAS  Google Scholar 

  111. Jasuja GK, Travison TG, Davda M, Murabito JM, Basaria S, Zhang A, et al. Age trends in estradiol and estrone levels measured using liquid chromatography tandem mass spectrometry in community-dwelling men of the Framingham Heart Study. J Gerontol A Biol Sci Med Sci. 2013;68(6):733–40. doi:https://doi.org/10.1093/gerona/gls216.

    Article  CAS  Google Scholar 

  112. Khosla S, Amin S, Singh RJ, Atkinson EJ, Melton LJ, Riggs BL. Comparison of sex steroid measurements in men by immunoassay versus mass spectroscopy and relationships with cortical and trabecular volumetric bone mineral density. Osteoporos Int. 2008;19(10):1465–71. doi:https://doi.org/10.1007/s00198-008-0591-5.

    Article  CAS  Google Scholar 

  113. Yeap BB, Knuiman MW, Divitini ML, Handelsman DJ, Beilby JP, Beilin J, et al. Differential associations of testosterone, dihydrotestosterone and oestradiol with physical, metabolic and health-related factors in community-dwelling men aged 17–97 years from the Busselton Health Survey. Clin Endocrinol (Oxf). 2014;81(1):100–8. doi:https://doi.org/10.1111/cen.12407.

    Article  CAS  Google Scholar 

  114. Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab. 2003;88(11):5327–33. doi:https://doi.org/10.1210/jc.2003-030736.

    Article  CAS  Google Scholar 

  115. Khosla S, Melton LJ, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83(7):2266–74. doi:https://doi.org/10.1210/jcem.83.7.4924.

    Article  CAS  Google Scholar 

  116. Marriott RJ, Murray K, Hankey GJ, Manning L, Dwivedi G, Wu FCW, et al. Longitudinal changes in serum testosterone and sex hormone-binding globulin in men aged 40–69 years from the UK Biobank. Clin Endocrinol (Oxf). 2021. doi:https://doi.org/10.1111/cen.14648.

    Article  Google Scholar 

  117. Wu FC, Tajar A, Beynon JM, Pye SR, Silman AJ, Finn JD, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35. doi:https://doi.org/10.1056/NEJMoa0911101.

    Article  CAS  Google Scholar 

  118. Tajar A, Huhtaniemi IT, O’Neill TW, Finn JD, Pye SR, Lee DM, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–16. doi:https://doi.org/10.1210/jc.2011-2513.

    Article  CAS  Google Scholar 

  119. Xu P, Choi E, White K, Yafi FA. Low Testosterone in Male Cancer Patients and Survivors. Sex Med Rev. 2021;9(1):133–42. doi:https://doi.org/10.1016/j.sxmr.2020.03.004.

    Article  Google Scholar 

  120. Carrero JJ, Qureshi AR, Nakashima A, Arver S, Parini P, Lindholm B, et al. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant. 2011;26(1):184–90. doi:https://doi.org/10.1093/ndt/gfq397.

    Article  CAS  Google Scholar 

  121. Cauley JA, Blackwell T, Zmuda JM, Fullman RL, Ensrud KE, Stone KL, et al. Correlates of trabecular and cortical volumetric bone mineral density at the femoral neck and lumbar spine: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2010;25(9):1958–71. doi:https://doi.org/10.1002/jbmr.86.

    Article  Google Scholar 

  122. Mellström D, Johnell O, Ljunggren O, Eriksson AL, Lorentzon M, Mallmin H, et al. Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res. 2006;21(4):529–35. doi:https://doi.org/10.1359/jbmr.060110.

    Article  Google Scholar 

  123. Greendale GA, Edelstein S, Barrett-Connor E. Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res. 1997;12(11):1833–43. doi:https://doi.org/10.1359/jbmr.1997.12.11.1833.

    Article  CAS  Google Scholar 

  124. Kenny AM, Prestwood KM, Marcello KM, Raisz LG. Determinants of bone density in healthy older men with low testosterone levels. J Gerontol A Biol Sci Med Sci. 2000;55(9):M492-7. doi:https://doi.org/10.1093/gerona/55.9.m492.

    Article  Google Scholar 

  125. Kong SH, Kim JH, Lee JH, Hong AR, Shin CS, Cho NH. Dehydroepiandrosterone Sulfate and Free Testosterone but not Estradiol are Related to Muscle Strength and Bone Microarchitecture in Older Adults. Calcif Tissue Int. 2019;105(3):285–93. doi:https://doi.org/10.1007/s00223-019-00566-5.

    Article  CAS  Google Scholar 

  126. Piot A, Chapurlat RD, Claustrat B, Szulc P. Relationship Between Sex Steroids and Deterioration of Bone Microarchitecture in Older Men: The Prospective STRAMBO Study. J Bone Miner Res. 2019;34(9):1562–73. doi:https://doi.org/10.1002/jbmr.3746.

    Article  CAS  Google Scholar 

  127. Fink HA, Ewing SK, Ensrud KE, Barrett-Connor E, Taylor BC, Cauley JA, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15. doi:https://doi.org/10.1210/jc.2006-0173.

    Article  CAS  Google Scholar 

  128. Cauley JA, Ewing SK, Taylor BC, Fink HA, Ensrud KE, Bauer DC, et al. Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density–the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2010;95(9):4314–23. doi:https://doi.org/10.1210/jc.2009-2635.

    Article  CAS  Google Scholar 

  129. Amin S, Zhang Y, Sawin CT, Evans SR, Hannan MT, Kiel DP, et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med. 2000;133(12):951–63. doi:https://doi.org/10.7326/0003-4819-133-12-200012190-00010.

    Article  CAS  Google Scholar 

  130. Vandenput L, Lorentzon M, Sundh D, Nilsson ME, Karlsson MK, Mellström D, et al. Serum estradiol levels are inversely associated with cortical porosity in older men. J Clin Endocrinol Metab. 2014;99(7):E1322-6. doi:https://doi.org/10.1210/jc.2014-1319.

    Article  CAS  Google Scholar 

  131. Woo J, Kwok T, Leung JC, Ohlsson C, Vandenput L, Leung PC. Sex steroids and bone health in older Chinese men. Osteoporos Int. 2012;23(5):1553–62. doi:https://doi.org/10.1007/s00198-011-1552-y.

    Article  CAS  Google Scholar 

  132. Araujo AB, Travison TG, Leder BZ, McKinlay JB. Correlations between serum testosterone, estradiol, and sex hormone-binding globulin and bone mineral density in a diverse sample of men. J Clin Endocrinol Metab. 2008;93(6):2135–41. doi:https://doi.org/10.1210/jc.2007-1469.

    Article  CAS  Google Scholar 

  133. Guebeli A, Platz EA, Paller CJ, McGlynn KA, Rohrmann S. Relationship of sex steroid hormones with bone mineral density of the lumbar spine in adult men. Bone Joint Res. 2020;9(3):139–45. doi:https://doi.org/10.1302/2046-3758.93.BJR-2019-0141.R1.

    Article  Google Scholar 

  134. Khosla S, Melton LJ, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab. 2001;86(8):3555–61. doi:https://doi.org/10.1210/jcem.86.8.7736.

    Article  CAS  Google Scholar 

  135. Khosla S, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J Bone Miner Res. 2005;20(5):730–40. doi:https://doi.org/10.1359/JBMR.041228.

    Article  Google Scholar 

  136. Ohlsson C, Nilsson ME, Tivesten A, Ryberg H, Mellström D, Karlsson MK, et al. Comparisons of immunoassay and mass spectrometry measurements of serum estradiol levels and their influence on clinical association studies in men. J Clin Endocrinol Metab. 2013;98(6):E1097-102. doi:https://doi.org/10.1210/jc.2012-3861.

    Article  CAS  Google Scholar 

  137. Kuchuk NO, van Schoor NM, Pluijm SM, Smit JH, de Ronde W, Lips P. The association of sex hormone levels with quantitative ultrasound, bone mineral density, bone turnover and osteoporotic fractures in older men and women. Clin Endocrinol (Oxf). 2007;67(2):295–303. doi:https://doi.org/10.1111/j.1365-2265.2007.02882.x.

    Article  CAS  Google Scholar 

  138. Szulc P, Claustrat B, Marchand F, Delmas PD. Increased risk of falls and increased bone resorption in elderly men with partial androgen deficiency: the MINOS study. J Clin Endocrinol Metab. 2003;88(11):5240–7. doi:https://doi.org/10.1210/jc.2003-030200.

    Article  CAS  Google Scholar 

  139. Vanderschueren D, Pye SR, Venken K, Borghs H, Gaytant J, Huhtaniemi IT, et al. Gonadal sex steroid status and bone health in middle-aged and elderly European men. Osteoporos Int. 2010;21(8):1331–9. doi:https://doi.org/10.1007/s00198-009-1144-2.

    Article  CAS  Google Scholar 

  140. Cawthon PM, Schousboe JT, Harrison SL, Ensrud KE, Black D, Cauley JA, et al. Sex hormones, sex hormone binding globulin, and vertebral fractures in older men. Bone. 2016;84:271–8. doi:https://doi.org/10.1016/j.bone.2016.01.009.

    Article  CAS  Google Scholar 

  141. Bjørnerem A, Ahmed LA, Joakimsen RM, Berntsen GK, Fønnebø V, Jørgensen L, et al. A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur J Endocrinol. 2007;157(1):119–25. doi:https://doi.org/10.1530/EJE-07-0032.

    Article  CAS  Google Scholar 

  142. Tuck SP, Scane AC, Fraser WD, Diver MJ, Eastell R, Francis RM. Sex steroids and bone turnover markers in men with symptomatic vertebral fractures. Bone. 2008;43(6):999–1005. doi:https://doi.org/10.1016/j.bone.2008.08.123.

    Article  CAS  Google Scholar 

  143. Goderie-Plomp HW, van der Klift M, de Ronde W, Hofman A, de Jong FH, Pols HA. Endogenous sex hormones, sex hormone-binding globulin, and the risk of incident vertebral fractures in elderly men and women: the Rotterdam Study. J Clin Endocrinol Metab. 2004;89(7):3261–9. doi:https://doi.org/10.1210/jc.2002-022041.

    Article  CAS  Google Scholar 

  144. Nyquist F, Gärdsell P, Sernbo I, Jeppsson JO, Johnell O. Assessment of sex hormones and bone mineral density in relation to occurrence of fracture in men: a prospective population-based study. Bone. 1998;22(2):147–51. doi:https://doi.org/10.1016/s8756-3282(97)00250-0.

    Article  CAS  Google Scholar 

  145. Vandenput L, Mellström D, Kindmark A, Johansson H, Lorentzon M, Leung J, et al. High Serum SHBG Predicts Incident Vertebral Fractures in Elderly Men. J Bone Miner Res. 2016;31(3):683–9. doi:https://doi.org/10.1002/jbmr.2718.

    Article  CAS  Google Scholar 

  146. Mellström D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Odén A, et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res. 2008;23(10):1552–60. doi:https://doi.org/10.1359/jbmr.080518.

    Article  Google Scholar 

  147. Meier C, Nguyen TV, Handelsman DJ, Schindler C, Kushnir MM, Rockwood AL, et al. Endogenous sex hormones and incident fracture risk in older men: the Dubbo Osteoporosis Epidemiology Study. Arch Intern Med. 2008;168(1):47–54. doi:https://doi.org/10.1001/archinternmed.2007.2.

    Article  CAS  Google Scholar 

  148. Rosenberg EA, Bůžková P, Fink HA, Robbins JA, Shores MM, Matsumoto AM, et al. Testosterone, dihydrotestosterone, bone density, and hip fracture risk among older men: The Cardiovascular Health Study. Metabolism. 2021;114:154399. doi:https://doi.org/10.1016/j.metabol.2020.154399.

    Article  CAS  Google Scholar 

  149. Amin S, Zhang Y, Felson DT, Sawin CT, Hannan MT, Wilson PW, et al. Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am J Med. 2006;119(5):426–33. doi:https://doi.org/10.1016/j.amjmed.2005.10.048.

    Article  CAS  Google Scholar 

  150. LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett-Connor E, Ensrud KE, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46. doi:https://doi.org/10.1210/jc.2009-0206.

    Article  CAS  Google Scholar 

  151. Roddam AW, Appleby P, Neale R, Dowsett M, Folkerd E, Tipper S, et al. Association between endogenous plasma hormone concentrations and fracture risk in men and women: the EPIC-Oxford prospective cohort study. J Bone Miner Metab. 2009;27(4):485–93. doi:https://doi.org/10.1007/s00774-009-0060-z.

    Article  CAS  Google Scholar 

  152. Nethander M, Vandenput L, Eriksson AL, Windahl S, Funck-Brentano T, Ohlsson C. Evidence of a Causal Effect of Estradiol on Fracture Risk in Men. J Clin Endocrinol Metab. 2019;104(2):433–42. doi:https://doi.org/10.1210/jc.2018-00934.

    Article  Google Scholar 

  153. Nielson CM, Wiedrick J, Shen J, Jacobs J, Baker ES, Baraff A, et al. Identification of Hip BMD Loss and Fracture Risk Markers Through Population-Based Serum Proteomics. J Bone Miner Res. 2017;32(7):1559–67. doi:https://doi.org/10.1002/jbmr.3125.

    Article  CAS  Google Scholar 

  154. Hsu B, Cumming RG, Seibel MJ, Naganathan V, Blyth FM, Bleicher K, et al. Reproductive Hormones and Longitudinal Change in Bone Mineral Density and Incident Fracture Risk in Older Men: The Concord Health and Aging in Men Project. J Bone Miner Res. 2015;30(9):1701–8. doi:https://doi.org/10.1002/jbmr.2493.

    Article  CAS  Google Scholar 

  155. Hsu B, Seibel MJ, Cumming RG, Blyth FM, Naganathan V, Bleicher K, et al. Progressive Temporal Change in Serum SHBG, But Not in Serum Testosterone or Estradiol, Is Associated With Bone Loss and Incident Fractures in Older Men: The Concord Health and Ageing in Men Project. J Bone Miner Res. 2016;31(12):2115–22. doi:https://doi.org/10.1002/jbmr.2904.

    Article  CAS  Google Scholar 

  156. El Maghraoui A, Ouzzif Z, Mounach A, Ben-Ghabrit A, Achemlal L, Bezza A, et al. The relationship between sex steroids, bone turnover and vertebral fracture prevalence in asymptomatic men. Bone. 2011;49(4):853–7. doi:https://doi.org/10.1016/j.bone.2011.06.022.

    Article  CAS  Google Scholar 

  157. Yeap BB, Alfonso H, Chubb SAP, Center JR, Beilin J, Hankey GJ, et al. U-Shaped Association of Plasma Testosterone, and no Association of Plasma Estradiol, with Incidence of Fractures in Men. J Clin Endocrinol Metab. 2020;105(5). doi:https://doi.org/10.1210/clinem/dgaa115.

  158. Hidayat K, Du X, Shi BM. Sex hormone-binding globulin and risk of fracture in older adults: systematic review and meta-analysis of observational studies. Osteoporos Int. 2018;29(10):2171–80. doi:https://doi.org/10.1007/s00198-018-4600-z.

    Article  CAS  Google Scholar 

  159. Eriksson AL, Lorentzon M, Mellström D, Vandenput L, Swanson C, Andersson N, et al. SHBG gene promoter polymorphisms in men are associated with serum sex hormone-binding globulin, androgen and androgen metabolite levels, and hip bone mineral density. J Clin Endocrinol Metab. 2006;91(12):5029–37. doi:https://doi.org/10.1210/jc.2006-0679.

    Article  CAS  Google Scholar 

  160. Orwoll ES, Lapidus J, Wang PY, Vandenput L, Hoffman A, Fink HA, et al. The Limited Clinical Utility of Testosterone, Estradiol, and Sex Hormone Binding Globulin Measurements in the Prediction of Fracture Risk and Bone Loss in Older Men. J Bone Miner Res. 2017;32(3):633–40. doi:https://doi.org/10.1002/jbmr.3021.

    Article  CAS  Google Scholar 

  161. Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D, et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab. 2013;98(8):E1283-304. doi:https://doi.org/10.1210/jc.2013-1195.

    Article  CAS  Google Scholar 

  162. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, et al. Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol. 1998;147(9):871–9. doi:https://doi.org/10.1093/oxfordjournals.aje.a009541.

    Article  CAS  Google Scholar 

  163. Iuliano S, Poon S, Robbins J, Bui M, Wang X, De Groot L, et al. Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care: cluster randomised controlled trial. BMJ. 2021;375:n2364. doi:https://doi.org/10.1136/bmj.n2364.

    Article  CAS  Google Scholar 

  164. Ensrud KE, Taylor BC, Paudel ML, Cauley JA, Cawthon PM, Cummings SR, et al. Serum 25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab. 2009;94(8):2773–80. doi:https://doi.org/10.1210/jc.2008-2786.

    Article  CAS  Google Scholar 

  165. Cauley JA, Parimi N, Ensrud KE, Bauer DC, Cawthon PM, Cummings SR, et al. Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res. 2010;25(3):545–53. doi:https://doi.org/10.1359/jbmr.090826.

    Article  CAS  Google Scholar 

  166. Martin EN, Haney EM, Shannon J, Cauley JA, Ensrud KE, Keaveny TM, et al. Femoral volumetric bone density, geometry, and strength in relation to 25-hydroxy vitamin D in older men. J Bone Miner Res. 2015;30(3):562–9. doi:https://doi.org/10.1002/jbmr.2360.

    Article  CAS  Google Scholar 

  167. Looker AC. Serum 25-hydroxyvitamin D and risk of major osteoporotic fractures in older U.S. adults. J Bone Miner Res. 2013;28(5):997–1006. doi:https://doi.org/10.1002/jbmr.1828.

    Article  CAS  Google Scholar 

  168. Swanson CM, Srikanth P, Lee CG, Cummings SR, Jans I, Cauley JA, et al. Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D With Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. J Bone Miner Res. 2015;30(8):1403–13. doi:https://doi.org/10.1002/jbmr.2487.

    Article  CAS  Google Scholar 

  169. Szulc P, Munoz F, Marchand F, Chapuy MC, Delmas PD. Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int. 2003;73(6):520–30. doi:https://doi.org/10.1007/s00223-002-2103-5.

    Article  CAS  Google Scholar 

  170. Vanderschueren D, Pye SR, O’Neill TW, Lee DM, Jans I, Billen J, et al. Active vitamin D (1,25-dihydroxyvitamin D) and bone health in middle-aged and elderly men: the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2013;98(3):995–1005. doi:https://doi.org/10.1210/jc.2012-2772.

    Article  CAS  Google Scholar 

  171. Barrett-Connor E, Laughlin GA, Li H, Nielson CM, Wang PY, Dam TT, et al. The association of concurrent vitamin D and sex hormone deficiency with bone loss and fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2306–13. doi:https://doi.org/10.1002/jbmr.1697.

    Article  CAS  Google Scholar 

  172. Lee DM, Tajar A, Pye SR, Boonen S, Vanderschueren D, Bouillon R, et al. Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur J Endocrinol. 2012;166(1):77–85. doi:https://doi.org/10.1530/EJE-11-0743.

    Article  CAS  Google Scholar 

  173. Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P. Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab. 2006;91(8):2980–5. doi:https://doi.org/10.1210/jc.2006-0510.

    Article  CAS  Google Scholar 

  174. LeBoff MS, Chou SH, Murata EM, Donlon CM, Cook NR, Mora S, et al. Effects of Supplemental Vitamin D on Bone Health Outcomes in Women and Men in the VITamin D and OmegA-3 TriaL (VITAL). J Bone Miner Res. 2020;35(5):883–93. doi:https://doi.org/10.1002/jbmr.3958.

    Article  CAS  Google Scholar 

  175. LeBoff MS, Murata EM, Cook NR, Cawthon P, Chou SH, Kotler G, et al. VITamin D and OmegA-3 TriaL (VITAL): Effects of Vitamin D Supplements on Risk of Falls in the US Population. J Clin Endocrinol Metab. 2020;105(9). doi:https://doi.org/10.1210/clinem/dgaa311.

  176. Waterhouse M, Sanguineti E, Baxter C, Duarte Romero B, McLeod DSA, English DR, et al. Vitamin D supplementation and risk of falling: outcomes from the randomized, placebo-controlled D-Health Trial. J Cachexia Sarcopenia Muscle. 2021. doi:https://doi.org/10.1002/jcsm.12759.

    Article  Google Scholar 

  177. Avenell A, Mak JC, O’Connell D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev. 2014(4):CD000227. doi: https://doi.org/10.1002/14651858.CD000227.pub4.

  178. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27(1):367–76. doi:https://doi.org/10.1007/s00198-015-3386-5.

    Article  CAS  Google Scholar 

  179. Bislev LS, Grove-Laugesen D, Rejnmark L. Vitamin D and Muscle Health: A Systematic Review and Meta-analysis of Randomized Placebo-Controlled Trials. J Bone Miner Res. 2021;36(9):1651–60. doi:https://doi.org/10.1002/jbmr.4412.

    Article  CAS  Google Scholar 

  180. Laurent MR, Dedeyne L, Dupont J, Mellaerts B, Dejaeger M, Gielen E. Age-related bone loss and sarcopenia in men. Maturitas. 2019;122:51–6. doi:https://doi.org/10.1016/j.maturitas.2019.01.006.

    Article  Google Scholar 

  181. Laurent MR, Dubois V, Claessens F, Verschueren SM, Vanderschueren D, Gielen E, et al. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol. 2016;432:14–36. doi:https://doi.org/10.1016/j.mce.2015.10.017.

    Article  CAS  Google Scholar 

  182. Patel HP, Dawson A, Westbury LD, Hasnaoui G, Syddall HE, Shaw S, et al. Muscle Mass, Muscle Morphology and Bone Health Among Community-Dwelling Older Men: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif Tissue Int. 2018;103(1):35–43. doi:https://doi.org/10.1007/s00223-018-0388-2.

    Article  CAS  Google Scholar 

  183. Alajlouni D, Bliuc D, Tran T, Eisman JA, Nguyen TV, Center JR. Decline in Muscle Strength and Performance Predicts Fracture Risk in Elderly Women and Men. J Clin Endocrinol Metab. 2020;105(9). doi:https://doi.org/10.1210/clinem/dgaa414.

  184. Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, et al. Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2018;33(12):2150–7. doi:https://doi.org/10.1002/jbmr.3556.

    Article  Google Scholar 

  185. Harvey NC, Orwoll E, Kwok T, Karlsson MK, Rosengren BE, Ribom E, et al. Sarcopenia Definitions as Predictors of Fracture Risk Independent of FRAX. J Bone Miner Res. 2021;36(7):1235–44. doi:https://doi.org/10.1002/jbmr.4293.

    Article  Google Scholar 

  186. Buehring B, Hansen KE, Lewis BL, Cummings SR, Lane NE, Binkley N, et al. Dysmobility Syndrome Independently Increases Fracture Risk in the Osteoporotic Fractures in Men (MrOS) Prospective Cohort Study. J Bone Miner Res. 2018;33(9):1622–9. doi:https://doi.org/10.1002/jbmr.3455.

    Article  Google Scholar 

  187. Ng CA, Scott D, Seibel MJ, Cumming RG, Naganathan V, Blyth FM, et al. Higher-Impact Physical Activity Is Associated With Maintenance of Bone Mineral Density But Not Reduced Incident Falls or Fractures in Older Men: The Concord Health and Aging in Men Project. J Bone Miner Res. 2021;36(4):662–72. doi:https://doi.org/10.1002/jbmr.4228.

    Article  CAS  Google Scholar 

  188. Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG, et al. Does Combined Osteopenia/Osteoporosis and Sarcopenia Confer Greater Risk of Falls and Fracture Than Either Condition Alone in Older Men? The Concord Health and Ageing in Men Project. J Gerontol A Biol Sci Med Sci. 2019;74(6):827–34. doi:https://doi.org/10.1093/gerona/gly162.

    Article  CAS  Google Scholar 

  189. Wong RMY, Wong H, Zhang N, Chow SKH, Chau WW, Wang J, et al. The relationship between sarcopenia and fragility fracture-a systematic review. Osteoporos Int. 2019;30(3):541–53. doi:https://doi.org/10.1007/s00198-018-04828-0.

    Article  CAS  Google Scholar 

  190. Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci. 2012;69(10):1651–67. doi:https://doi.org/10.1007/s00018-011-0883-3.

    Article  CAS  Google Scholar 

  191. Finkelstein JS, Yu EW, Burnett-Bowie SA. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(25):2457. doi:https://doi.org/10.1056/NEJMc1313169.

    Article  Google Scholar 

  192. Storer TW, Miciek R, Travison TG. Muscle function, physical performance and body composition changes in men with prostate cancer undergoing androgen deprivation therapy. Asian J Androl. 2012;14(2):204–21. doi:https://doi.org/10.1038/aja.2011.104.

    Article  CAS  Google Scholar 

  193. LeBlanc ES, Wang PY, Lee CG, Barrett-Connor E, Cauley JA, Hoffman AR, et al. Higher testosterone levels are associated with less loss of lean body mass in older men. J Clin Endocrinol Metab. 2011;96(12):3855–63. doi:https://doi.org/10.1210/jc.2011-0312.

    Article  CAS  Google Scholar 

  194. Aguirre LE, Colleluori G, Dorin R, Robbins D, Chen R, Jiang B, et al. Hypogonadal Men with Higher Body Mass Index have Higher Bone Density and Better Bone Quality but Reduced Muscle Density. Calcif Tissue Int. 2017;101(6):602–11. doi:https://doi.org/10.1007/s00223-017-0316-x.

    Article  CAS  Google Scholar 

  195. Huuskonen J, Väisänen SB, Kröger H, Jurvelin JS, Alhava E, Rauramaa R. Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middle-aged men. The DNASCO study. Osteoporos Int. 2001;12(5):349–55. doi:https://doi.org/10.1007/s001980170101.

    Article  CAS  Google Scholar 

  196. Duckham RL, Masud T, Taylor R, Kendrick D, Carpenter H, Iliffe S, et al. Randomised controlled trial of the effectiveness of community group and home-based falls prevention exercise programmes on bone health in older people: the ProAct65 + bone study. Age Ageing. 2015;44(4):573–9. doi:https://doi.org/10.1093/ageing/afv055.

    Article  Google Scholar 

  197. Bolam KA, Skinner TL, Jenkins DG, Galvão DA, Taaffe DR. The Osteogenic Effect of Impact-Loading and Resistance Exercise on Bone Mineral Density in Middle-Aged and Older Men: A Pilot Study. Gerontology. 2015;62(1):22–32. doi:https://doi.org/10.1159/000435837.

    Article  Google Scholar 

  198. Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR. A Comparison of Bone-Targeted Exercise Strategies to Reduce Fracture Risk in Middle-Aged and Older Men with Osteopenia and Osteoporosis: LIFTMOR-M Semi-Randomized Controlled Trial. J Bone Miner Res. 2020;35(8):1404–14. doi:https://doi.org/10.1002/jbmr.4008.

    Article  Google Scholar 

  199. Kemmler W, Kohl M, Fröhlich M, Jakob F, Engelke K, von Stengel S, et al. Effects of High-Intensity Resistance Training on Osteopenia and Sarcopenia Parameters in Older Men with Osteosarcopenia-One-Year Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). J Bone Miner Res. 2020;35(9):1634–44. doi:https://doi.org/10.1002/jbmr.4027.

    Article  CAS  Google Scholar 

  200. Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53(2):321–8. doi:https://doi.org/10.1016/j.bone.2012.12.045.

    Article  Google Scholar 

  201. Kukuljan S, Nowson CA, Sanders KM, Nicholson GC, Seibel MJ, Salmon J, et al. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J Clin Endocrinol Metab. 2011;96(4):955–63. doi:https://doi.org/10.1210/jc.2010-2284.

    Article  CAS  Google Scholar 

  202. Daly RM, Dalla Via J, Fyfe JJ, Nikander R, Kukuljan S. Effects of exercise frequency and training volume on bone changes following a multi-component exercise intervention in middle aged and older men: Secondary analysis of an 18-month randomized controlled trial. Bone. 2021;148:115944. doi:https://doi.org/10.1016/j.bone.2021.115944.

    Article  CAS  Google Scholar 

  203. Helge EW, Andersen TR, Schmidt JF, Jørgensen NR, Hornstrup T, Krustrup P, et al. Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports. 2014;24(Suppl 1):98–104. doi:https://doi.org/10.1111/sms.12239.

    Article  Google Scholar 

  204. Pedersen MT, Vorup J, Bangsbo J. Effect of a 26-month floorball training on male elderly’s cardiovascular fitness, glucose control, body composition, and functional capacity. J Sport Health Sci. 2018;7(2):149–58. doi:https://doi.org/10.1016/j.jshs.2017.12.002.

    Article  Google Scholar 

  205. Hamilton BR, Staines KA, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis Y, et al. The Effects of Exercise on Bone Mineral Density in Men: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Calcif Tissue Int. 2021. doi:https://doi.org/10.1007/s00223-021-00893-6.

    Article  Google Scholar 

  206. Remes T, Väisänen SB, Mahonen A, Huuskonen J, Kröger H, Jurvelin JS, et al. Aerobic exercise and bone mineral density in middle-aged finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms. Bone. 2003;32(4):412–20. doi:https://doi.org/10.1016/s8756-3282(03)00032-2.

    Article  CAS  Google Scholar 

  207. Bergström U, Björnstig U, Stenlund H, Jonsson H, Svensson O. Fracture mechanisms and fracture pattern in men and women aged 50 years and older: a study of a 12-year population-based injury register, Umeå, Sweden. Osteoporos Int. 2008;19(9):1267–73. doi:https://doi.org/10.1007/s00198-007-0549-z.

    Article  Google Scholar 

  208. Lewis CE, Ewing SK, Taylor BC, Shikany JM, Fink HA, Ensrud KE, et al. Predictors of non-spine fracture in elderly men: the MrOS study. J Bone Miner Res. 2007;22(2):211–9. doi:https://doi.org/10.1359/jbmr.061017.

    Article  Google Scholar 

  209. Harvey NC, Odén A, Orwoll E, Lapidus J, Kwok T, Karlsson MK, et al. Falls Predict Fractures Independently of FRAX Probability: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2018;33(3):510–6. doi:https://doi.org/10.1002/jbmr.3331.

    Article  Google Scholar 

  210. Orwoll ES, Fino NF, Gill TM, Cauley JA, Strotmeyer ES, Ensrud KE, et al. The Relationships Between Physical Performance, Activity Levels, and Falls in Older Men. J Gerontol A Biol Sci Med Sci. 2019;74(9):1475–83. doi:https://doi.org/10.1093/gerona/gly248.

    Article  Google Scholar 

  211. Orwoll E, Lambert LC, Marshall LM, Blank J, Barrett-Connor E, Cauley J, et al. Endogenous testosterone levels, physical performance, and fall risk in older men. Arch Intern Med. 2006;166(19):2124–31. doi:https://doi.org/10.1001/archinte.166.19.2124.

    Article  Google Scholar 

  212. Vandenput L, Mellström D, Laughlin GA, Cawthon PM, Cauley JA, Hoffman AR, et al. Low Testosterone, but Not Estradiol, Is Associated With Incident Falls in Older Men: The International MrOS Study. J Bone Miner Res. 2017;32(6):1174–81. doi:https://doi.org/10.1002/jbmr.3088.

    Article  CAS  Google Scholar 

  213. Bhasin S, Ellenberg SS, Storer TW, Basaria S, Pahor M, Stephens-Shields AJ, et al. Effect of testosterone replacement on measures of mobility in older men with mobility limitation and low testosterone concentrations: secondary analyses of the Testosterone Trials. Lancet Diabetes Endocrinol. 2018;6(11):879–90. doi:https://doi.org/10.1016/S2213-8587(18)30171-2.

    Article  CAS  Google Scholar 

  214. Guirguis-Blake JM, Michael YL, Perdue LA, Coppola EL, Beil TL. Interventions to Prevent Falls in Older Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2018;319(16):1705–16. doi:https://doi.org/10.1001/jama.2017.21962.

    Article  Google Scholar 

  215. Diab DL, Watts NB. Updates on Osteoporosis in Men. Endocrinol Metab Clin North Am. 2021;50(2):239–49. doi:https://doi.org/10.1016/j.ecl.2021.03.001.

    Article  Google Scholar 

  216. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343(9):604–10. doi:https://doi.org/10.1056/NEJM200008313430902.

    Article  CAS  Google Scholar 

  217. Boonen S, Orwoll ES, Wenderoth D, Stoner KJ, Eusebio R, Delmas PD. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J Bone Miner Res. 2009;24(4):719–25. doi:https://doi.org/10.1359/jbmr.081214.

    Article  CAS  Google Scholar 

  218. Boonen S, Lorenc RS, Wenderoth D, Stoner KJ, Eusebio R, Orwoll ES. Evidence for safety and efficacy of risedronate in men with osteoporosis over 4 years of treatment: Results from the 2-year, open-label, extension study of a 2-year, randomized, double-blind, placebo-controlled study. Bone. 2012;51(3):383–8. doi:https://doi.org/10.1016/j.bone.2012.06.016.

    Article  CAS  Google Scholar 

  219. Ringe JD, Faber H, Farahmand P, Dorst A. Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Rheumatol Int. 2006;26(5):427–31. doi:https://doi.org/10.1007/s00296-005-0004-4.

    Article  CAS  Google Scholar 

  220. Ringe JD, Farahmand P, Faber H, Dorst A. Sustained efficacy of risedronate in men with primary and secondary osteoporosis: results of a 2-year study. Rheumatol Int. 2009;29(3):311–5. doi:https://doi.org/10.1007/s00296-008-0689-2.

    Article  CAS  Google Scholar 

  221. Boonen S, Orwoll E, Magaziner J, Colón-Emeric CS, Adachi JD, Bucci-Rechtweg C, et al. Once-yearly zoledronic acid in older men compared with women with recent hip fracture. J Am Geriatr Soc. 2011;59(11):2084–90. doi:https://doi.org/10.1111/j.1532-5415.2011.03666.x.

    Article  Google Scholar 

  222. Boonen S, Reginster JY, Kaufman JM, Lippuner K, Zanchetta J, Langdahl B, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–23. doi:https://doi.org/10.1056/NEJMoa1204061.

    Article  CAS  Google Scholar 

  223. Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809. doi:https://doi.org/10.1056/NEJMoa074941.

    Article  CAS  Google Scholar 

  224. Greenspan SL, Nelson JB, Trump DL, Resnick NM. Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: a randomized trial. Ann Intern Med. 2007;146(6):416–24. doi:https://doi.org/10.7326/0003-4819-146-6-200703200-00006.

    Article  Google Scholar 

  225. Nayak S, Greenspan SL. Osteoporosis Treatment Efficacy for Men: A Systematic Review and Meta-Analysis. J Am Geriatr Soc. 2017;65(3):490–5. doi:https://doi.org/10.1111/jgs.14668.

    Article  Google Scholar 

  226. Xu Z. Alendronate for the Treatment of Osteoporosis in Men: A Meta-Analysis of Randomized Controlled Trials. Am J Ther. 2017;24(2):e130-e8. doi:https://doi.org/10.1097/MJT.0000000000000446.

    Article  Google Scholar 

  227. Zeng LF, Pan BQ, Liang GH, Luo MH, Cao Y, Guo D, et al. Does Routine Anti-Osteoporosis Medication Lower the Risk of Fractures in Male Subjects? An Updated Systematic Review With Meta-Analysis of Clinical Trials. Front Pharmacol. 2019;10:882. doi:https://doi.org/10.3389/fphar.2019.00882.

    Article  CAS  Google Scholar 

  228. Orwoll E, Teglbjærg CS, Langdahl BL, Chapurlat R, Czerwinski E, Kendler DL, et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab. 2012;97(9):3161–9. doi:https://doi.org/10.1210/jc.2012-1569.

    Article  CAS  Google Scholar 

  229. Langdahl BL, Teglbjærg CS, Ho PR, Chapurlat R, Czerwinski E, Kendler DL, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015;100(4):1335–42. doi:https://doi.org/10.1210/jc.2014-4079.

    Article  CAS  Google Scholar 

  230. Nakamura T, Matsumoto T, Sugimoto T, Hosoi T, Miki T, Gorai I, et al. Clinical Trials Express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab. 2014;99(7):2599–607. doi:https://doi.org/10.1210/jc.2013-4175.

    Article  CAS  Google Scholar 

  231. Smith MR, Egerdie B, Hernández Toriz N, Feldman R, Tammela TL, Saad F, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55. doi:https://doi.org/10.1056/NEJMoa0809003.

    Article  CAS  Google Scholar 

  232. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17. doi:https://doi.org/10.1359/jbmr.2003.18.1.9.

    Article  CAS  Google Scholar 

  233. Kaufman JM, Orwoll E, Goemaere S, San Martin J, Hossain A, Dalsky GP, et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005;16(5):510–6. doi:https://doi.org/10.1007/s00198-004-1713-3.

    Article  CAS  Google Scholar 

  234. Hauser B, Alonso N, Riches PL. Review of Current Real-World Experience with Teriparatide as Treatment of Osteoporosis in Different Patient Groups. J Clin Med. 2021;10(7). doi:https://doi.org/10.3390/jcm10071403.

  235. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men With Osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93. doi:https://doi.org/10.1210/jc.2017-02163.

    Article  Google Scholar 

  236. Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab. 1996;81(12):4358–65. doi:https://doi.org/10.1210/jcem.81.12.8954042.

    Article  CAS  Google Scholar 

  237. Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A, et al. Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):2670–7. doi:https://doi.org/10.1210/jcem.85.8.6731.

    Article  CAS  Google Scholar 

  238. Laitinen EM, Hero M, Vaaralahti K, Tommiska J, Raivio T. Bone mineral density, body composition and bone turnover in patients with congenital hypogonadotropic hypogonadism. Int J Androl. 2012;35(4):534–40. doi:https://doi.org/10.1111/j.1365-2605.2011.01237.x.

    Article  CAS  Google Scholar 

  239. Pizzocaro A, Vena W, Condorelli R, Radicioni A, Rastrelli G, Pasquali D, et al. Testosterone treatment in male patients with Klinefelter syndrome: a systematic review and meta-analysis. J Endocrinol Invest. 2020;43(12):1675–87. doi:https://doi.org/10.1007/s40618-020-01299-1.

    Article  CAS  Google Scholar 

  240. Aminorroaya A, Kelleher S, Conway AJ, Ly LP, Handelsman DJ. Adequacy of androgen replacement influences bone density response to testosterone in androgen-deficient men. Eur J Endocrinol. 2005;152(6):881–6. doi:https://doi.org/10.1530/eje.1.01920.

    Article  CAS  Google Scholar 

  241. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 1997;82(8):2386–90. doi:https://doi.org/10.1210/jcem.82.8.4163.

    Article  CAS  Google Scholar 

  242. Leifke E, Körner HC, Link TM, Behre HM, Peters PE, Nieschlag E. Effects of testosterone replacement therapy on cortical and trabecular bone mineral density, vertebral body area and paraspinal muscle area in hypogonadal men. Eur J Endocrinol. 1998;138(1):51–8. doi:https://doi.org/10.1530/eje.0.1380051.

    Article  CAS  Google Scholar 

  243. Antonio L, Caerels S, Jardi F, Delaunay E, Vanderschueren D. Testosterone replacement in congenital hypogonadotropic hypogonadism maintains bone density but has only limited osteoanabolic effects. Andrology. 2019;7(3):302–6. doi:https://doi.org/10.1111/andr.12604.

    Article  CAS  Google Scholar 

  244. Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, et al. Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab. 2004;89(2):503–10. doi:https://doi.org/10.1210/jc.2003-031110.

    Article  CAS  Google Scholar 

  245. Aversa A, Bruzziches R, Francomano D, Greco EA, Fornari R, Di Luigi L, et al. Effects of long-acting testosterone undecanoate on bone mineral density in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 36 months controlled study. Aging Male. 2012;15(2):96–102. doi:https://doi.org/10.3109/13685538.2011.631230.

    Article  CAS  Google Scholar 

  246. Bouloux PM, Legros JJ, Elbers JM, Geurts TB, Kaspers MJ, Meehan AG, et al. Effects of oral testosterone undecanoate therapy on bone mineral density and body composition in 322 aging men with symptomatic testosterone deficiency: a 1-year, randomized, placebo-controlled, dose-ranging study. Aging Male. 2013;16(2):38–47. doi:https://doi.org/10.3109/13685538.2013.773420.

    Article  CAS  Google Scholar 

  247. Ng Tang Fui M, Hoermann R, Bracken K, Handelsman DJ, Inder WJ, Stuckey BGA, et al. Effect of Testosterone Treatment on Bone Microarchitecture and Bone Mineral Density in Men: A 2-Year RCT. J Clin Endocrinol Metab. 2021;106(8):e3143-e58. doi:https://doi.org/10.1210/clinem/dgab149.

    Article  Google Scholar 

  248. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci. 2001;56(5):M266-72. doi:https://doi.org/10.1093/gerona/56.5.m266.

    Article  Google Scholar 

  249. Rodriguez-Tolrà J, Torremadé J, di Gregorio S, Del Rio L, Franco E. Effects of testosterone treatment on bone mineral density in men with testosterone deficiency syndrome. Andrology. 2013;1(4):570–5. doi:https://doi.org/10.1111/j.2047-2927.2013.00090.x.

    Article  CAS  Google Scholar 

  250. Idan A, Griffiths KA, Harwood DT, Seibel MJ, Turner L, Conway AJ, et al. Long-term effects of dihydrotestosterone treatment on prostate growth in healthy, middle-aged men without prostate disease: a randomized, placebo-controlled trial. Ann Intern Med. 2010;153(10):621–32. doi:https://doi.org/10.7326/0003-4819-153-10-201011160-00004.

    Article  Google Scholar 

  251. Anderson FH, Francis RM, Peaston RT, Wastell HJ. Androgen supplementation in eugonadal men with osteoporosis: effects of six months’ treatment on markers of bone formation and resorption. J Bone Miner Res. 1997;12(3):472–8. doi:https://doi.org/10.1359/jbmr.1997.12.3.472.

    Article  CAS  Google Scholar 

  252. Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010;58(6):1134–43. doi:https://doi.org/10.1111/j.1532-5415.2010.02865.x.

    Article  Google Scholar 

  253. Konaka H, Sugimoto K, Orikasa H, Iwamoto T, Takamura T, Takeda Y, et al. Effects of long-term androgen replacement therapy on the physical and mental statuses of aging males with late-onset hypogonadism: a multicenter randomized controlled trial in Japan (EARTH Study). Asian J Androl. 2016;18(1):25–34. doi:https://doi.org/10.4103/1008-682X.148720.

    Article  CAS  Google Scholar 

  254. Shigehara K, Konaka H, Koh E, Nakashima K, Iijima M, Nohara T, et al. Effects of testosterone replacement therapy on hypogonadal men with osteopenia or osteoporosis: a subanalysis of a prospective randomized controlled study in Japan (EARTH study). Aging Male. 2017;20(3):139–45. doi:https://doi.org/10.1080/13685538.2017.1303829.

    Article  CAS  Google Scholar 

  255. Wang YJ, Zhan JK, Huang W, Wang Y, Liu Y, Wang S, et al. Effects of low-dose testosterone undecanoate treatment on bone mineral density and bone turnover markers in elderly male osteoporosis with low serum testosterone. Int J Endocrinol. 2013;2013:570413. doi:https://doi.org/10.1155/2013/570413.

    Article  CAS  Google Scholar 

  256. Zhang Z, Kang D, Li H. The effects of testosterone on bone health in males with testosterone deficiency: a systematic review and meta-analysis. BMC Endocr Disord. 2020;20(1):33. doi:https://doi.org/10.1186/s12902-020-0509-6.

    Article  CAS  Google Scholar 

  257. Corona G, Vena W, Pizzocaro A, Giagulli VA, Francomano D, Rastrelli G, et al. Testosterone supplementation and bone parameters: a systematic review and meta-analysis study. J Endocrinol Invest. 2022. doi:https://doi.org/10.1007/s40618-021-01702-5.

    Article  Google Scholar 

  258. Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Holmes JH, et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(6):1966–72. doi:https://doi.org/10.1210/jcem.84.6.5741.

    Article  CAS  Google Scholar 

  259. Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, et al. Effect of Testosterone Treatment on Volumetric Bone Density and Strength in Older Men With Low Testosterone: A Controlled Clinical Trial. JAMA Intern Med. 2017;177(4):471–9. doi:https://doi.org/10.1001/jamainternmed.2016.9539.

    Article  Google Scholar 

  260. Cauley JA, Ellenberg SS, Schwartz AV, Ensrud KE, Keaveny TM, Snyder PJ. Effect of testosterone treatment on the trabecular bone score in older men with low serum testosterone. Osteoporos Int. 2021;32(11):2371–5. doi:https://doi.org/10.1007/s00198-021-06022-1.

    Article  CAS  Google Scholar 

  261. Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA, et al. Lessons From the Testosterone Trials. Endocr Rev. 2018;39(3):369–86. doi:https://doi.org/10.1210/er.2017-00234.

    Article  Google Scholar 

  262. Yeap BB, Page ST, Grossmann M. Testosterone treatment in older men: clinical implications and unresolved questions from the Testosterone Trials. Lancet Diabetes Endocrinol. 2018;6(8):659–72. doi:https://doi.org/10.1016/S2213-8587(17)30416-3.

    Article  CAS  Google Scholar 

  263. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44. doi:https://doi.org/10.1210/jc.2018-00229.

    Article  Google Scholar 

  264. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22. doi:https://doi.org/10.1210/jc.2011-3045.

    Article  CAS  Google Scholar 

  265. Corona G, Goulis DG, Huhtaniemi I, Zitzmann M, Toppari J, Forti G, et al. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: Endorsing organization: European Society of Endocrinology. Andrology. 2020;8(5):970–87. doi:https://doi.org/10.1111/andr.12770.

    Article  Google Scholar 

  266. Jayasena CN, Anderson RA, Llahana S, Barth JH, MacKenzie F, Wilkes S, et al. Society for Endocrinology guidelines for testosterone replacement therapy in male hypogonadism. Clin Endocrinol (Oxf). 2021. doi:https://doi.org/10.1111/cen.14633.

    Article  Google Scholar 

  267. Porcelli T, Maffezzoni F, Pezzaioli LC, Delbarba A, Cappelli C, Ferlin A. MANAGEMENT OF ENDOCRINE DISEASE: Male osteoporosis: diagnosis and management - should the treatment and the target be the same as for female osteoporosis? Eur J Endocrinol. 2020;183(3):R75–93. doi:https://doi.org/10.1530/EJE-20-0034.

    Article  CAS  Google Scholar 

  268. Rochira V, Antonio L, Vanderschueren D. EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology. 2018;6(2):272–85. doi:https://doi.org/10.1111/andr.12470.

    Article  CAS  Google Scholar 

  269. Barrett-Connor E, Nielson CM, Orwoll E, Bauer DC, Cauley JA, Group OFiMS. Epidemiology of rib fractures in older men: Osteoporotic Fractures in Men (MrOS) prospective cohort study. BMJ. 2010;340:c1069. doi:https://doi.org/10.1136/bmj.c1069.

    Article  Google Scholar 

  270. Ensrud KE, Schousboe JT, Kats AM, Vo TN, Taylor BC, Cawthon PM, et al. Height Loss in Old Age and Fracture Risk Among Men in Late Life: A Prospective Cohort Study. J Bone Miner Res. 2021;36(6):1069–76. doi:https://doi.org/10.1002/jbmr.4278.

    Article  CAS  Google Scholar 

  271. Painter SE, Kleerekoper M, Camacho PM. Secondary osteoporosis: a review of the recent evidence. Endocr Pract. 2006;12(4):436–45. doi:https://doi.org/10.4158/EP.12.4.436.

    Article  Google Scholar 

  272. Hudec SM, Camacho PM. Secondary causes of osteoporosis. Endocr Pract. 2013;19(1):120–8. doi:https://doi.org/10.4158/EP12059.RA.

    Article  Google Scholar 

  273. Ryan CS, Petkov VI, Adler RA. Osteoporosis in men: the value of laboratory testing. Osteoporos Int. 2011;22(6):1845–53. doi:https://doi.org/10.1007/s00198-010-1421-0.

    Article  CAS  Google Scholar 

  274. Johnson K, Suriyaarachchi P, Kakkat M, Boersma D, Gunawardene P, Demontiero O, et al. Yield and cost-effectiveness of laboratory testing to identify metabolic contributors to falls and fractures in older persons. Arch Osteoporos. 2015;10:226. doi:https://doi.org/10.1007/s11657-015-0226-3.

    Article  Google Scholar 

  275. Fink HA, Litwack-Harrison S, Taylor BC, Bauer DC, Orwoll ES, Lee CG, et al. Clinical utility of routine laboratory testing to identify possible secondary causes in older men with osteoporosis: the Osteoporotic Fractures in Men (MrOS) Study. Osteoporos Int. 2016;27(1):331–8. doi:https://doi.org/10.1007/s00198-015-3356-y.

    Article  CAS  Google Scholar 

  276. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metab. 1999;84(10):3431–4. doi:https://doi.org/10.1210/jcem.84.10.6060.

    Article  CAS  Google Scholar 

  277. Gielen E, Vanderschueren D, Callewaert F, Boonen S. Osteoporosis in men. Best Pract Res Clin Endocrinol Metab. 2011;25(2):321–35. doi:https://doi.org/10.1016/j.beem.2010.08.012.

    Article  CAS  Google Scholar 

  278. Tran TS, Center JR, Seibel MJ, Eisman JA, Kushnir MM, Rockwood AL, et al. Relationship between Serum Testosterone and Fracture Risk in Men: A Comparison of RIA and LC-MS/MS. Clin Chem. 2015;61(9):1182–90. doi:https://doi.org/10.1373/clinchem.2015.242339.

    Article  CAS  Google Scholar 

  279. Rochira V, Kara E, Carani C. The endocrine role of estrogens on human male skeleton. Int J Endocrinol. 2015;2015:165215. doi:https://doi.org/10.1155/2015/165215.

    Article  Google Scholar 

  280. Santen RJ, Demers LM, Ziegler RG. Workshop on measuring estrogen exposure and metabolism: Summary of the presentations. Steroids. 2015;99(Pt A):1–7. doi:https://doi.org/10.1016/j.steroids.2014.12.012.

    Article  CAS  Google Scholar 

  281. Pye SR, Ward KA, Cook MJ, Laurent MR, Gielen E, Borghs H, et al. Bone turnover predicts change in volumetric bone density and bone geometry at the radius in men. Osteoporos Int. 2017;28(3):935–44. doi:https://doi.org/10.1007/s00198-016-3816-z.

    Article  CAS  Google Scholar 

  282. Marques EA, Gudnason V, Lang T, Sigurdsson G, Sigurdsson S, Aspelund T, et al. Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study. Osteoporos Int. 2016;27(12):3485–94. doi:https://doi.org/10.1007/s00198-016-3675-7.

    Article  CAS  Google Scholar 

  283. Szulc P, Montella A, Delmas PD. High bone turnover is associated with accelerated bone loss but not with increased fracture risk in men aged 50 and over: the prospective MINOS study. Ann Rheum Dis. 2008;67(9):1249–55. doi:https://doi.org/10.1136/ard.2007.077941.

    Article  CAS  Google Scholar 

  284. Eastell R, Pigott T, Gossiel F, Naylor KE, Walsh JS, Peel NFA. DIAGNOSIS OF ENDOCRINE DISEASE: Bone turnover markers: are they clinically useful? Eur J Endocrinol. 2018;178(1):R19–31. doi:https://doi.org/10.1530/EJE-17-0585.

    Article  CAS  Google Scholar 

  285. Diez-Perez A, Naylor KE, Abrahamsen B, Agnusdei D, Brandi ML, Cooper C, et al. International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int. 2017;28(3):767–74. doi:https://doi.org/10.1007/s00198-017-3906-6.

    Article  CAS  Google Scholar 

  286. Chalhoub D, Orwoll ES, Cawthon PM, Ensrud KE, Boudreau R, Greenspan S, et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone. 2016;92:100–6. doi:https://doi.org/10.1016/j.bone.2016.08.014.

    Article  Google Scholar 

  287. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25(10):2359–81. doi:https://doi.org/10.1007/s00198-014-2794-2.

    Article  CAS  Google Scholar 

  288. Watts NB, Leslie WD, Foldes AJ, Miller PD. 2013 International Society for Clinical Densitometry Position Development Conference: Task Force on Normative Databases. J Clin Densitom. 2013;16(4):472 – 81. doi: https://doi.org/10.1016/j.jocd.2013.08.001.

  289. Kanis JA, Bianchi G, Bilezikian JP, Kaufman JM, Khosla S, Orwoll E, et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int. 2011;22(11):2789–98. doi:https://doi.org/10.1007/s00198-011-1632-z.

    Article  CAS  Google Scholar 

  290. Pasco JA, Lane SE, Brennan SL, Timney EN, Bucki-Smith G, Dobbins AG, et al. Fracture risk among older men: osteopenia and osteoporosis defined using cut-points derived from female versus male reference data. Osteoporos Int. 2014;25(3):857–62. doi:https://doi.org/10.1007/s00198-013-2561-9.

    Article  CAS  Google Scholar 

  291. Ensrud KE, Taylor BC, Peters KW, Gourlay ML, Donaldson MG, Leslie WD, et al. Implications of expanding indications for drug treatment to prevent fracture in older men in United States: cross sectional and longitudinal analysis of prospective cohort study. BMJ. 2014;349:g4120. doi:https://doi.org/10.1136/bmj.g4120.

    Article  CAS  Google Scholar 

  292. Binkley N, Adler R, Bilezikian JP. Osteoporosis diagnosis in men: the T-score controversy revisited. Curr Osteoporos Rep. 2014;12(4):403–9. doi:https://doi.org/10.1007/s11914-014-0242-z.

    Article  Google Scholar 

  293. Diem SJ, Peters KW, Gourlay ML, Schousboe JT, Taylor BC, Orwoll ES, et al. Screening for Osteoporosis in Older Men: Operating Characteristics of Proposed Strategies for Selecting Men for BMD Testing. J Gen Intern Med. 2017;32(11):1235–41. doi:https://doi.org/10.1007/s11606-017-4153-4.

    Article  Google Scholar 

  294. Nayak S, Greenspan SL. Cost-Effectiveness of Osteoporosis Screening Strategies for Men. J Bone Miner Res. 2016;31(6):1189–99. doi:https://doi.org/10.1002/jbmr.2784.

    Article  Google Scholar 

  295. Mai HT, Tran TS, Ho-Le TP, Center JR, Eisman JA, Nguyen TV. Two-Thirds of All Fractures Are Not Attributable to Osteoporosis and Advancing Age: Implications for Fracture Prevention. J Clin Endocrinol Metab. 2019;104(8):3514–20. doi:https://doi.org/10.1210/jc.2018-02614.

    Article  Google Scholar 

  296. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202. doi:https://doi.org/10.1016/j.bone.2003.10.001.

    Article  CAS  Google Scholar 

  297. https://www.sheffield.ac.uk/FRAX/index.aspx. Accessed.

  298. Kanis JA, Harvey NC, Johansson H, Liu E, Vandenput L, Lorentzon M, et al. A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res. 2020;32(2):187–96. doi:https://doi.org/10.1007/s40520-019-01432-y.

    Article  Google Scholar 

  299. Harvey NC, Johansson H, Odén A, Karlsson MK, Rosengren BE, Ljunggren Ö, et al. FRAX predicts incident falls in elderly men: findings from MrOs Sweden. Osteoporos Int. 2016;27(1):267–74. doi:https://doi.org/10.1007/s00198-015-3295-7.

    Article  CAS  Google Scholar 

  300. Ettinger B, Ensrud KE, Blackwell T, Curtis JR, Lapidus JA, Orwoll ES, et al. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2013;24(4):1185–93. doi:https://doi.org/10.1007/s00198-012-2215-3.

    Article  CAS  Google Scholar 

  301. Gourlay ML, Ritter VS, Fine JP, Overman RA, Schousboe JT, Cawthon PM, et al. Comparison of fracture risk assessment tools in older men without prior hip or spine fracture: the MrOS study. Arch Osteoporos. 2017;12(1):91. doi:https://doi.org/10.1007/s11657-017-0389-1.

    Article  Google Scholar 

  302. Hamdy RC, Seier E, Whalen K, Clark WA, Hicks K, Piggee TB. FRAX calculated without BMD does not correctly identify Caucasian men with densitometric evidence of osteoporosis. Osteoporos Int. 2018;29(4):947–52. doi:https://doi.org/10.1007/s00198-017-4368-6.

    Article  CAS  Google Scholar 

  303. Leslie WD, Majumdar SR, Morin SN, Lix LM, Schousboe JT, Ensrud KE, et al. Performance of FRAX in clinical practice according to sex and osteoporosis definitions: the Manitoba BMD registry. Osteoporos Int. 2018;29(3):759–67. doi:https://doi.org/10.1007/s00198-018-4415-y.

    Article  CAS  Google Scholar 

  304. Byberg L, Gedeborg R, Cars T, Sundström J, Berglund L, Kilander L, et al. Prediction of fracture risk in men: a cohort study. J Bone Miner Res. 2012;27(4):797–807. doi:https://doi.org/10.1002/jbmr.1498.

    Article  Google Scholar 

  305. Cauley JA, Cawthon PM, Peters KE, Cummings SR, Ensrud KE, Bauer DC, et al. Risk Factors for Hip Fracture in Older Men: The Osteoporotic Fractures in Men Study (MrOS). J Bone Miner Res. 2016;31(10):1810–9. doi:https://doi.org/10.1002/jbmr.2836.

    Article  CAS  Google Scholar 

  306. Su Y, Leung J, Hans D, Lamy O, Kwok T. The added value of trabecular bone score to FRAX® to predict major osteoporotic fractures for clinical use in Chinese older people: the Mr. OS and Ms. OS cohort study in Hong Kong. Osteoporos Int. 2017;28(1):111–7. doi:https://doi.org/10.1007/s00198-016-3741-1.

    Article  CAS  Google Scholar 

  307. Schousboe JT, Vo TN, Langsetmo L, Taylor BC, Cawthon PM, Schwartz AV, et al. Association of Trabecular Bone Score (TBS) With Incident Clinical and Radiographic Vertebral Fractures Adjusted for Lumbar Spine BMD in Older Men: A Prospective Cohort Study. J Bone Miner Res. 2017;32(7):1554–8. doi:https://doi.org/10.1002/jbmr.3130.

    Article  CAS  Google Scholar 

  308. Schousboe JT, Vo T, Taylor BC, Cawthon PM, Schwartz AV, Bauer DC, et al. Prediction of Incident Major Osteoporotic and Hip Fractures by Trabecular Bone Score (TBS) and Prevalent Radiographic Vertebral Fracture in Older Men. J Bone Miner Res. 2016;31(3):690–7. doi:https://doi.org/10.1002/jbmr.2713.

    Article  CAS  Google Scholar 

  309. Holloway KL, Mohebbi M, Betson AG, Hans D, Hyde NK, Brennan-Olsen SL, et al. Prediction of major osteoporotic and hip fractures in Australian men using FRAX scores adjusted with trabecular bone score. Osteoporos Int. 2018;29(1):101–8. doi:https://doi.org/10.1007/s00198-017-4226-6.

    Article  CAS  Google Scholar 

  310. Fink HA, Litwack-Harrison S, Ensrud KE, Shen J, Schousboe JT, Cawthon PM, et al. Association of Incident, Clinically Undiagnosed Radiographic Vertebral Fractures With Follow-Up Back Pain Symptoms in Older Men: the Osteoporotic Fractures in Men (MrOS) Study. J Bone Miner Res. 2017;32(11):2263–8. doi:https://doi.org/10.1002/jbmr.3215.

    Article  Google Scholar 

  311. Ensrud KE, Blackwell TL, Fink HA, Zhang J, Cauley JA, Cawthon PM, et al. What Proportion of Incident Radiographic Vertebral Fractures in Older Men Is Clinically Diagnosed and Vice Versa: A Prospective Study. J Bone Miner Res. 2016;31(8):1500–3. doi:https://doi.org/10.1002/jbmr.2831.

    Article  Google Scholar 

  312. Gielen E, Boonen S, Vanderschueren D, Sinnesael M, Verstuyf A, Claessens F, et al. Calcium and vitamin d supplementation in men. J Osteoporos. 2011;2011:875249. doi:https://doi.org/10.4061/2011/875249.

    Article  CAS  Google Scholar 

  313. Harvey NC, Biver E, Kaufman JM, Bauer J, Branco J, Brandi ML, et al. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int. 2017;28(2):447–62. doi:https://doi.org/10.1007/s00198-016-3773-6.

    Article  CAS  Google Scholar 

  314. Rizzoli R, Boonen S, Brandi ML, Bruyère O, Cooper C, Kanis JA, et al. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin. 2013;29(4):305–13. doi:https://doi.org/10.1185/03007995.2013.766162.

    Article  CAS  Google Scholar 

  315. Rizzoli R. Vitamin. D supplementation: upper limit for safety revisited? Aging Clin Exp Res. 2021;33(1):19–24. doi:https://doi.org/10.1007/s40520-020-01678-x.

    Article  Google Scholar 

  316. Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest. 1997;100(7):1755–9. doi:https://doi.org/10.1172/JCI119701.

    Article  CAS  Google Scholar 

  317. Bjørnerem A, Emaus N, Berntsen GK, Joakimsen RM, Fønnebø V, Wilsgaard T, et al. Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromsø study. Calcif Tissue Int. 2007;81(2):65–72. doi:https://doi.org/10.1007/s00223-007-9035-z.

    Article  CAS  Google Scholar 

  318. Christmas C, O’Connor KG, Harman SM, Tobin JD, Münzer T, Bellantoni MF, et al. Growth hormone and sex steroid effects on bone metabolism and bone mineral density in healthy aged women and men. J Gerontol A Biol Sci Med Sci. 2002;57(1):M12-8. doi:https://doi.org/10.1093/gerona/57.1.m12.

    Article  Google Scholar 

  319. Merza Z, Blumsohn A, Mah PM, Meads DM, McKenna SP, Wylie K, et al. Double-blind placebo-controlled study of testosterone patch therapy on bone turnover in men with borderline hypogonadism. Int J Androl. 2006;29(3):381–91. doi:https://doi.org/10.1111/j.1365-2605.2005.00612.x.

    Article  CAS  Google Scholar 

  320. Basurto L, Zarate A, Gomez R, Vargas C, Saucedo R, Galván R. Effect of testosterone therapy on lumbar spine and hip mineral density in elderly men. Aging Male. 2008;11(3):140–5. doi:https://doi.org/10.1080/13685530802273715.

    Article  CAS  Google Scholar 

  321. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, Aleman A, Lock TM, Bosch JL, et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008;299(1):39–52. doi:https://doi.org/10.1001/jama.2007.51.

    Article  CAS  Google Scholar 

  322. Svartberg J, Agledahl I, Figenschau Y, Sildnes T, Waterloo K, Jorde R. Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res. 2008;20(4):378–87. doi:https://doi.org/10.1038/ijir.2008.19.

    Article  CAS  Google Scholar 

  323. Permpongkosol S, Khupulsup K, Leelaphiwat S, Pavavattananusorn S, Thongpradit S, Petchthong T. Effects of 8-Year Treatment of Long-Acting Testosterone Undecanoate on Metabolic Parameters, Urinary Symptoms, Bone Mineral Density, and Sexual Function in Men With Late-Onset Hypogonadism. J Sex Med. 2016;13(8):1199–211. doi:https://doi.org/10.1016/j.jsxm.2016.06.003.

    Article  Google Scholar 

  324. Ng Tang Fui M, Hoermann R, Nolan B, Clarke M, Zajac JD, Grossmann M. Effect of testosterone treatment on bone remodelling markers and mineral density in obese dieting men in a randomized clinical trial. Sci Rep. 2018;8(1):9099. doi:https://doi.org/10.1038/s41598-018-27481-3.

    Article  CAS  Google Scholar 

  325. Colleluori G, Aguirre L, Napoli N, Qualls C, Villareal DT, Armamento-Villareal R. Testosterone Therapy Effects on Bone Mass and Turnover in Hypogonadal Men with Type 2 Diabetes. J Clin Endocrinol Metab. 2021;106(8):e3058-e68. doi:https://doi.org/10.1210/clinem/dgab181.

    Article  Google Scholar 

Download references

Funding

KD receives a PhD fellowship Fundamental Research from Flanders Research Foundation (FWO 1196522N). This work was funded by FWO research grant (G099518N) and by KU Leuven grant (C14/19/100).

Author information

Authors and Affiliations

Authors

Contributions

DV conceived the idea for the manuscript. KD and DV performed literature search. KD wrote the first draft with assistance of DV. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Dirk Vanderschueren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, K., Narinx, N., Antonio, L. et al. Bone health in ageing men. Rev Endocr Metab Disord 23, 1173–1208 (2022). https://doi.org/10.1007/s11154-022-09738-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09738-5

Keywords

Navigation