Skip to main content

Advertisement

Log in

The development and initial validation of the Breast Cancer Recurrence instrument (BreastCaRe)—a patient-reported outcome measure for detecting symptoms of recurrence after breast cancer

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Patient-reported outomes (PRO) may facilitate prompt treatment. We describe the development and psychometric properties of the first instrument to monitor for symptoms of breast cancer (BC) recurrence.

Methods

This study is nested in the MyHealth randomized trial of nurse-led follow-up based on electronically-collected PROs. We constructed items assessing symptoms of potential recurrence through expert interviews with six BC specialists in Denmark. Semi-structured cognitive interviews were carried out with a patient panel to assess acceptability and comprehensibility. Items were subsequently tested in a population of 1170 women 1–10 years after completing BC treatment. We carried out multiple-groups confirmatory factor analysis (CFA) and Rasch analysis to test dimensionality, local dependence (LD) and differential item functioning (DIF) according to sociodemographic and treatment-related factors. Clinical data was obtained from the Danish Breast Cancer Group registry.

Results

Twenty-two items were generated for the Breast Cancer Recurrence instrument (BreastCaRe). Cognitive testing resulted in clearer items. Seven subscales based on general, bone, liver, lung, brain, locoregional and contralateral recurrence symptoms were proposed. Both CFA and Rasch models confirmed the factor structure. No DIF was identified. Five item pairs showed LD but all items were retained to avoid loss of clinical information. Rasch models taking LD into account were used to generate a standardized scoring table for each subscale.

Conclusions

The BreastCaRe has good content and structural validity, patient acceptability and measurement invariance. We are preparing to examine the predictive validity of this new instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not publicly available due to data protection legislation.

Code availability

Available upon request.

References

  1. Yang, L. Y., Manhas, D. S., Howard, A. F., & Olson, R. A. (2018). Patient-reported outcome use in oncology: a systematic review of the impact on patient-clinician communication. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer., 26(1), 41–60. https://doi.org/10.1007/s00520-017-3865-7.

    Article  CAS  Google Scholar 

  2. Basch, E. M., Deal, A. M., Dueck, A. C., Bennett, A. V., Atkinson, T. M., Scher, H. I., et al. (2017). Overall survival results of a randomized trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. Journal of Clinical Oncology, 318(2), 197–198. https://doi.org/10.1200/JCO.2017.35.18_suppl.LBA2.

    Article  Google Scholar 

  3. Chen, J., Ou, L., & Hollis, S. J. (2013). A systematic review of the impact of routine collection of patient reported outcome measures on patients, providers and health organisations in an oncologic setting. BMC Health Services Research, 13, 211. https://doi.org/10.1186/1472-6963-13-211.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Runowicz, C. D., Leach, C. R., Henry, N. L., Henry, K. S., Mackey, H. T., Cowens-Alvarado, R. L., et al. (2016). American Cancer Society/American Society of Clinical Oncology breast cancer survivorship care guideline. CA: A Cancer Journal for Clinicians, 66(1), 43–73. https://doi.org/10.3322/caac.21319.

    Article  Google Scholar 

  5. Howell, D., Molloy, S., Wilkinson, K., Green, E., Orchard, K., Wang, K., et al. (2015). Patient-reported outcomes in routine cancer clinical practice: a scoping review of use, impact on health outcomes, and implementation factors. Annals of Oncology, 26(9), 1846–1858. https://doi.org/10.1093/annonc/mdv181.

    Article  CAS  PubMed  Google Scholar 

  6. Coulter A, Potter C, Peters M, Fitzpatrick R. Cancer PROMs: a scoping study: Macmillan Cancer Support2015.

  7. WHO. Breast cancer burden. 2018. http://www.who.int/cancer/detection/breastcancer/en/index1.html. Accessed 08/08/2018.

  8. Colleoni, M., Sun, Z., Price, K. N., Karlsson, P., Forbes, J. F., Thürlimann, B., et al. (2016). Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: results from the international breast cancer study group trials I to V. Journal of Clinical Oncology, 34(9), 927–935. https://doi.org/10.1200/JCO.2015.62.3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P., et al. (2017). 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. New England Journal of Medicine, 377(19), 1836–1846. https://doi.org/10.1056/NEJMoa1701830.

    Article  Google Scholar 

  10. Ahmad, A. (2013). Pathways to breast cancer recurrence. ISRN Oncol, 2013, 16. https://doi.org/10.1155/2013/290568.

    Article  CAS  Google Scholar 

  11. Wu, X., Baig, A., Kasymjanova, G., Kafi, K., Holcroft, C., Mekouar, H., et al. (2016). Pattern of local recurrence and distant metastasis in breast cancer by molecular subtype. Cureus., 8(12), e924. https://doi.org/10.7759/cureus.924.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taggart, F., Donnelly, P., & Dunn, J. (2012). Options for early breast cancer follow-up in primary and secondary care - a systematic review. BMC Cancer, 12(1), 238. https://doi.org/10.1186/1471-2407-12-238.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pivot, X., Asmar, L., Hortobagyi, G. N., Theriault, R., Pastorini, F., & Buzdar, A. (2000). A retrospective study of first indicators of breast cancer recurrence. Oncology, 58(3), 185–190. https://doi.org/10.1159/000012098.

    Article  CAS  PubMed  Google Scholar 

  14. Saltbæk, L., Horsboel, T. A., Offersen, B. V., Andersson, M., Friberg, A. S., Skriver, S. K., et al. (2020). Patterns in detection of recurrence among patients treated for breast cancer. Breast Cancer Research and Treatment. https://doi.org/10.1007/s10549-020-05847-4.

    Article  PubMed  Google Scholar 

  15. Denis, F., Lethrosne, C., Pourel, N., Molinier, O., Pointreau, Y., Domont, J., Bourgeois, H., Senellart, H., Trémolières, P., Lizée, T., Bennouna, J., Urban, T., El Khouri, C., Charron, A., Septans, A.-L., Balavoine, M., Landry, S., Solal-Céligny, P., & Letellier, C. (2017). Randomized trial comparing a web-mediated follow up with routine surveillance in lung cancer patients. Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/djx029.

    Article  PubMed  Google Scholar 

  16. Denis, F., Viger, L., Charron, A., Voog, E., Dupuis, O., Pointreau, Y., et al. (2014). Detection of lung cancer relapse using self-reported symptoms transmitted via an Internet Web-application: pilot study of the sentinel follow-up. Supportive Care in Cancer, 22(6), 1467–1473. https://doi.org/10.1007/s00520-013-2111-1.

    Article  PubMed  Google Scholar 

  17. Dima, A. L. (2018). Scale validation in applied health research: tutorial for a 6-step R-based psychometrics protocol. Health Psychology and Behavioral Medicine., 6(1), 136–161. https://doi.org/10.1080/21642850.2018.1472602.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation., 19(4), 539–549. https://doi.org/10.1007/s11136-010-9606-8.

    Article  Google Scholar 

  19. ClinicalTrials.gov. MyHealth: Follow-up After Breast Cancer Treatment (MyHealth). 2016. https://clinicaltrials.gov/ct2/show/NCT02949167.

  20. Saltbæk, L., Karlsen, R. V., Bidstrup, P. E., Høeg, B. L., Zoffmann, V., Horsbøl, T. A., et al. (2019). MyHealth: specialist nurse-led follow-up in breast cancer. A randomized controlled trial – development and feasibility. Acta Oncologica. https://doi.org/10.1080/0284186X.2018.1563717.

    Article  PubMed  Google Scholar 

  21. Bast, R. C., Croce, C. M., Hait, W. N., Hong, W. K., Kufe, D. W., Piccart-Gebhart, M., et al. (Eds.). (2017). Cancer Medicine. (9th ed.). Wiley-Blackwell: Hoboken, NJ.

    Google Scholar 

  22. Høeg, B. L., Tjørnhøj-Thomsen, T., Skaarup, J. A., Langstrup, H., Zoffmann, V., Saltbaek, L., et al. (2019). Whose perspective is it anyway? Dilemmas of patient involvement in the development of a randomized clinical trial – a qualitative study. Acta Oncologica, 58(5), 1–8. https://doi.org/10.1080/0284186X.2019.1566776.

    Article  Google Scholar 

  23. Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.

    Article  CAS  Google Scholar 

  24. Pedersen, C. B., Gøtzsche, H., Møller, J. Ø., & Mortensen, P. B. (2006). The Danish civil registration system. A cohort of eight million persons. Danish Medical Bulletin, 53, 441–449.

    PubMed  Google Scholar 

  25. Jensen, M. B., Laenkholm, A. V., Offersen, B. V., Christiansen, P., Kroman, N., Mouridsen, H. T., et al. (2018). The clinical database and implementation of treatment guidelines by the Danish Breast Cancer Cooperative Group in 2007–2016. Acta Oncologica, 57(1), 13–18. https://doi.org/10.1080/0284186x.2017.1404638.

    Article  PubMed  Google Scholar 

  26. Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen’s Q3: Identification of local dependence in the rasch model using residual correlations. Applied Psychological Measurement, 41(3), 178–194. https://doi.org/10.1177/0146621616677520.

    Article  PubMed  Google Scholar 

  27. Scott NW, Fayers PM, Aaronson PM, Bottomley A, de Graeff A, Groenvold A et al. EORTC QLQ-C30 Reference Values 2008.

  28. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software; Vol 1, Issue 2 (2012). 2012.

  29. Svetina, D., Rutkowski, L., & Rutkowski, D. (2020). Multiple-group invariance with categorical outcomes using updated guidelines: An illustration using mplus and the lavaan/semtools packages. Structural Equation Modeling: A Multidisciplinary Journal., 27(1), 111–130. https://doi.org/10.1080/10705511.2019.1602776.

    Article  Google Scholar 

  30. Braeken, J., & van Assen, M. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450–466. https://doi.org/10.1037/met0000074.

    Article  PubMed  Google Scholar 

  31. Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: a review. The Journal of Educational Research., 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338.

    Article  Google Scholar 

  32. Christensen KB, Kreiner S, Mesbah M, editors. Rasch Models in Health. Wiley; 2012.

  33. Kreiner, S., & Christensen, K. B. (2002). Graphical Rasch models. In M. Mesbah, B. F. Cole, & M. L. T. Lee (Eds.), Statistical Methods for Quality of Life Studies: Design, Measurements and Analysis. (pp. 187–203). Boston: Springer.

    Chapter  Google Scholar 

  34. Smith, R. M., Schumacker, R. E., & Bush, M. J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66–78.

    CAS  PubMed  Google Scholar 

  35. Smith, A. B., Rush, R., Fallowfield, L. J., Velikova, G., & Sharpe, M. (2008). Rasch fit statistics and sample size considerations for polytomous data. BMC Medical Research Methodology, 8, 33. https://doi.org/10.1186/1471-2288-8-33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Christensen K, Kreiner S. Item Fit Statistics. In: Christensen K, Kreiner S, Mesbah M, editors. Rasch Models in Health. 2013. p. 83–104.

  37. Kreiner, S., & Christensen, K. B. (2013). Two Tests of Local Independence. In K. B. Christensen, S. Kreiner, & M. Mesbah (Eds.), Rasch Models in Health Hoboken. (pp. 131–136). NJ: John Wiley & Sons.

    Chapter  Google Scholar 

  38. Kreiner, S., & Christensen, K. B. (2011). Item screening in graphical loglinear rasch models. Psychometrika, 76(2), 228–256. https://doi.org/10.1007/s11336-011-9203-y.

    Article  Google Scholar 

  39. Kreiner S, Christensen KB. Overall Tests of the Rasch Model. In: Kreiner S, Christensen KB, Mesbah M, editors. Rasch Models in Health. 2013. p. 105–10.

  40. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427–450. https://doi.org/10.1007/BF02294627.

    Article  Google Scholar 

  41. Christensen, K. B. (2013). Conditional maximum likelihood estimation in polytomous rasch models using SAS. ISRN Computational Mathematics, 2013, 1–8.

    Article  Google Scholar 

  42. Christensen, K. B. (2006). Fitting polytomous Rasch models in SAS. Journal of Applied Measurement, 7(4), 407–417.

    PubMed  Google Scholar 

  43. Kreiner S, Nielsen T. Item analysis in DIGRAM 3.04: Part I: Guided tours. Department of Biostastistics, University of Copenhagen 2013.

  44. Martinková, P., Drabinová, A., Liaw, Y.-L., Sanders, E. A., McFarland, J. L., & Price, R. M. (2017). Checking equity: why differential item functioning analysis should be a routine part of developing conceptual assessments. CBE Life Sciences Education. https://doi.org/10.1187/cbe.16-10-0307.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bradley, C., & Massof, R. W. (2018). Method of successive dichotomizations: An improved method for estimating measures of latent variables from rating scale data. PLoS ONE. https://doi.org/10.1371/journal.pone.0206106.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34(1), 1–97. https://doi.org/10.1007/BF03372160.

    Article  Google Scholar 

  47. Müller, M. (2020). Item fit statistics for Rasch analysis: can we trust them? Journal of Statistical Distributions and Applications., 7(1), 5. https://doi.org/10.1186/s40488-020-00108-7.

    Article  Google Scholar 

  48. Montgomery, D. A., Krupa, K., & Cooke, T. G. (2007). Alternative methods of follow up in breast cancer: a systematic review of the literature. British Journal of Cancer, 96(11), 1625–1632. https://doi.org/10.1038/sj.bjc.6603771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52.

    Google Scholar 

Download references

Acknowledgements

We wish to thank our expert panel (senior consultants Dr Birgitte Offersen, Dr Michael Andersson, Dr Niels Kroman, and Dr Anders Bonde), our patient panel, and Julie A. Skaarup, who carried out the patient cognitive interviews. We also thank Visti B. Larsen for his invaluable assistance in data management.

Funding

The MyHealth trial was funded by the Danish Cancer Society, Region Zealand, Rigshospitalet (Copenhagen University Hospital) and the Capital Region of Denmark.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, data collection, analysis and/or interpretation. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Beverley Lim Høeg.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Høeg, B.L., Saltbæk, L., Christensen, K.B. et al. The development and initial validation of the Breast Cancer Recurrence instrument (BreastCaRe)—a patient-reported outcome measure for detecting symptoms of recurrence after breast cancer. Qual Life Res 30, 2671–2682 (2021). https://doi.org/10.1007/s11136-021-02841-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-021-02841-1

Keywords

Navigation