Skip to main content

Advertisement

Log in

Assessing safety concerns of interstitial lung disease associated with antibody-drug conjugates: a real-world pharmacovigilance evaluation of the FDA adverse event reporting system

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

An Author Correction to this article was published on 17 April 2024

This article has been updated

Abstract

Background

Antibody-drug conjugates have revolutionized cancer therapy due to their selectivity and efficacy. However, concerns have been raised regarding the potential effects of trastuzumab deruxtecan in interstitial lung diseases.

Aim

This study aimed to investigate the safety signals and time to onset of antibody-drug conjugates induced interstitial lung disease.

Method

We utilized the FDA Adverse Event Reporting System database (2004–2022) to identify interstitial lung disease safety signals in 13 FDA-approved antibody-drug conjugates. Disproportionality analysis was conducted to estimate the reporting odds ratios for interstitial lung disease.

Results

Seven antibody-drug conjugates exhibited safety signals of interstitial lung disease: trastuzumab deruxtecan [reporting odds ratio, ROR (95% confidence intervals, CI) = 64.15 (57.07–72.10)], enfortumab vedotin [ROR (95% CI) = 5.24 (3.25–8.43)], trastuzumab emtansine [ROR (95% CI) = 3.62 (2.90–4.53)], brentuximab vedotin [ROR (95% CI) = 3.22 (2.49–4.17)], polatuzumab vedotin [ROR (95% CI) = 2.56 (1.59–4.12)], gemtuzumab ozogamicin [ROR (95% CI) = 2.53 (1.70–3.78)], and inotuzumab ozogamicin [ROR (95% CI) = 2.33 (1.21–4.49)]. Five antibody-drug conjugates with limited reports were excluded from further analysis: belantamab mafodotin, loncastuximab tesirine, mirvetuximab sorafenib, tisotumab vedotin, and moxetumomab pasudotox. Japan and the United States were the primary reporting countries.

Conclusion

This real-world study highlights high safety signals of interstitial lung disease associated with antibody-drug conjugates. Clinicians should be aware of these safety concerns and risk factors and implement early identification measures for their patients. Future research should prioritize comprehensively exploring the relationship between antibody-drug conjugates and lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Tarantino P, Carmagnani PR, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. Ca-Cancer J Clin. 2022;72(2):165–82. https://doi.org/10.3322/caac.21705.

    Article  PubMed  Google Scholar 

  2. Wu Q, Qian W, Sun X, et al. Small-molecule inhibitors, immune checkpoint inhibitors, and more: fda-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol. 2022;15(1):143. https://doi.org/10.1186/s13045-022-01362-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu Z, Li S, Han S, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Tar. 2022;7(1):93. https://doi.org/10.1038/s41392-022-00947-7.

    Article  CAS  Google Scholar 

  4. Abuhelwa Z, Alloghbi A, Alqahtani A, et al. Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in erbb2-positive advanced solid malignancies: a systematic review. Drugs. 2022;82(9):979–87. https://doi.org/10.1007/s40265-022-01736-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hackshaw MD, Danysh HE, Singh J, et al. Incidence of pneumonitis/interstitial lung disease induced by her2-targeting therapy for her2-positive metastatic breast cancer. Breast Cancer Res Treat. 2020;183(1):23–39. https://doi.org/10.1007/s10549-020-05754-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated her2-positive breast cancer. New Engl J Med. 2020;382(7):610–21. https://doi.org/10.1056/NEJMoa1914510.

    Article  CAS  PubMed  Google Scholar 

  7. Tarantino P, Modi S, Tolaney SM, et al. Interstitial lung disease induced by anti-erbb2 antibody-drug conjugates: a review. JAMA Oncol. 2021;7(12):1873–81. https://doi.org/10.1001/jamaoncol.2021.3595.

    Article  PubMed  Google Scholar 

  8. Conte P, Ascierto PA, Patelli G, et al. Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment. Esmo Open. 2022;7(2): 100404. https://doi.org/10.1016/j.esmoop.2022.100404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu Z, Shen G, Li J, et al. Incidence of antibody-drug conjugates-related pneumonitis in patients with solid tumors: a systematic review and meta-analysis. Crit Rev Oncol Hemat. 2023;184: 103960. https://doi.org/10.1016/j.critrevonc.2023.103960.

    Article  Google Scholar 

  10. Antoniou KM, Margaritopoulos GA, Tomassetti S, et al. Interstitial lung disease. Eur Respir Rev. 2014;23(131):40–54. https://doi.org/10.1183/09059180.00009113.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for her2-positive advanced breast cancer. New Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  CAS  PubMed  Google Scholar 

  12. Yoon S, Shin SJ, Kim HC, et al. Enfortumab vedotin-related pneumonitis is more common than expected and could lead to acute respiratory failure. Eur J Cancer. 2022;174:81–9. https://doi.org/10.1016/j.ejca.2022.07.014.

    Article  CAS  PubMed  Google Scholar 

  13. Ma Z, Zhang Y, Zhu M, et al. Interstitial lung disease associated with anti-her2 anti-body drug conjugates: results from clinical trials and the who’s pharmacovigilance database. Expert Rev Clin Phar. 2022;15(11):1351–61. https://doi.org/10.1080/17512433.2022.2121705.

    Article  CAS  Google Scholar 

  14. Gastaldon C, Raschi E, Kane JM, et al. Post-marketing safety concerns with esketamine: a disproportionality analysis of spontaneous reports submitted to the fda adverse event reporting system. Psychother Psychosom. 2021;90(1):41–8. https://doi.org/10.1159/000510703.

    Article  PubMed  Google Scholar 

  15. Hauben M, Bate A. Decision support methods for the detection of adverse events in post-marketing data. Drug Discov Today. 2009;14(7–8):343–57. https://doi.org/10.1016/j.drudis.2008.12.012.

    Article  CAS  PubMed  Google Scholar 

  16. FDA: Fda adverse event reporting system public dashboard. https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html (2023). Accessed 5 Mar 2023.

  17. Capella D, Pedros C, Vidal X, et al. Case-population studies in pharmacoepidemiology. Drug Saf. 2002;25(1):7–19. https://doi.org/10.2165/00002018-200225010-00002.

    Article  PubMed  Google Scholar 

  18. Sakaeda T, Tamon A, Kadoyama K, et al. Data mining of the public version of the FDA adverse event reporting system. Int J Med Sci. 2013;10(7):796–803. https://doi.org/10.7150/ijms.6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Noguchi Y, Tachi T, Teramachi H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source. Brief Bioinform. 2021;22(6):bbab347. https://doi.org/10.1093/bib/bbab347.

    Article  PubMed  Google Scholar 

  20. Pace ND, Multani JK. On the reporting of odds ratios and risk ratios. Nutrients. 2018;10(10):1512. https://doi.org/10.3390/nu10101512.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Puijenbroek EP, Bate A, Leufkens HG, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidem Drug Saf. 2002;11(1):3–10. https://doi.org/10.1002/pds.668.

    Article  CAS  Google Scholar 

  22. Wijsenbeek M, Suzuki A, Maher TM. Interstitial lung diseases. Lancet. 2022;400(10354):769–86. https://doi.org/10.1016/S0140-6736(22)01052-2.

    Article  PubMed  Google Scholar 

  23. Kubo K, Azuma A, Kanazawa M, et al. Consensus statement for the diagnosis and treatment of drug-induced lung injuries. Respir Investig. 2013;51(4):260–77. https://doi.org/10.1016/j.resinv.2013.09.001.

    Article  PubMed  Google Scholar 

  24. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68. https://doi.org/10.1200/JCO.2017.77.6385.

    Article  CAS  PubMed  Google Scholar 

  25. Haanen J, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–42. https://doi.org/10.1093/annonc/mdx225.

    Article  CAS  PubMed  Google Scholar 

  26. Marinescu DC, Raghu G, Remy-Jardin M, et al. Integration and application of clinical practice guidelines for the diagnosis of idiopathic pulmonary fibrosis and fibrotic hypersensitivity pneumonitis. Chest. 2022;162(3):614–29. https://doi.org/10.1016/j.chest.2022.06.013.

    Article  CAS  PubMed  Google Scholar 

  27. Yong WP, Teo FS, Teo LL, et al. Clinical best practices in optimal monitoring, early diagnosis, and effective management of antibody-drug conjugate-induced interstitial lung disease or pneumonitis: a multidisciplinary team approach in Singapore. Expert Opin Drug Metab Toxicol. 2022;18(12):805–15. https://doi.org/10.1080/17425255.2022.2162383.

    Article  PubMed  Google Scholar 

  28. Izbicki G, Segel MJ, Christensen TG, et al. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83(3):111–9. https://doi.org/10.1046/j.1365-2613.2002.00220.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Read WL, Mortimer JE, Picus J. Severe interstitial pneumonitis associated with docetaxel administration. Cancer. 2002;94(3):847–53. https://doi.org/10.1002/cncr.10263.

    Article  PubMed  Google Scholar 

  30. Takeda T, Sasaki T, Fukuda K, et al. Risk factors for gemcitabine plus nab-paclitaxel-induced interstitial lung disease in pancreatic cancer patients. Int J Clin Oncol. 2021;26(3):543–51. https://doi.org/10.1007/s10147-020-01827-2.

    Article  CAS  PubMed  Google Scholar 

  31. Michielin O, Udry E, Periard D, et al. Irinotecan-induced interstitial pneumonia. Lancet Oncol. 2004;5(5):322–4. https://doi.org/10.1016/S1470-2045(04)01471-8.

    Article  CAS  PubMed  Google Scholar 

  32. Ohmori T, Yamaoka T, Ando K, et al. Molecular and clinical features of EGFR-TKI-associated lung injury. Int J Mol Sci. 2021;22(2):792. https://doi.org/10.3390/ijms22020792.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oshima Y, Tanimoto T, Yuji K, et al. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol. 2018;4(8):1112–5. https://doi.org/10.1001/jamaoncol.2017.4526.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Ma Z, Sun X, et al. Interstitial lung disease in patients treated with cyclin-dependent kinase 4/6 inhibitors: a systematic review and meta-analysis of randomized controlled trials. Breast. 2022;62:162–9. https://doi.org/10.1016/j.breast.2022.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cortes J, Kim SB, Chung WP, et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. New Engl J Med. 2022;386(12):1143–54. https://doi.org/10.1056/NEJMoa2115022.

    Article  CAS  PubMed  Google Scholar 

  36. Kudoh S, Kato H, Nishiwaki Y, et al. Interstitial lung disease in japanese patients with lung cancer: a cohort and nested case-control study. Am J Resp Crit Care Med. 2008;177(12):1348–57. https://doi.org/10.1164/rccm.200710-1501OC.

    Article  PubMed  Google Scholar 

  37. Saito S, Lasky JA, Hagiwara K, et al. Ethnic differences in idiopathic pulmonary fibrosis: the Japanese perspective. Respir Investig. 2018;56(5):375–83. https://doi.org/10.1016/j.resinv.2018.06.002.

    Article  PubMed  Google Scholar 

  38. Imatoh T, Ushiki A, Ota M, et al. Association of hla-drb1*04:05 allele with drug-induced interstitial lung disease in Japanese population. Pharmacogenomics J. 2020;20(6):823–30. https://doi.org/10.1038/s41397-020-0172-3.

    Article  CAS  PubMed  Google Scholar 

  39. Wendisch D, Dietrich O, Mari T, et al. SARS-cov-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021;184(26):6243–61. https://doi.org/10.1016/j.cell.2021.11.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. New Engl J Med. 2021;16(384):1529–41. https://doi.org/10.1056/NEJMoa2028485.

    Article  Google Scholar 

  41. Bardia A, Messersmith WA, Kio EA, et al. Sacituzumab govitecan, a trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase i/ii immu-132-01 basket trial. Ann Oncol. 2021;32(6):746–56. https://doi.org/10.1016/j.annonc.2021.03.005.

    Article  CAS  PubMed  Google Scholar 

  42. Kalinsky K, Diamond JR, Vahdat LT, et al. Sacituzumab govitecan in previously treated hormone receptor-positive/her2-negative metastatic breast cancer: final results from a phase i/ii, single-arm, basket trial. Ann Oncol. 2020;31(12):1709–18. https://doi.org/10.1016/j.annonc.2020.09.004.

    Article  CAS  PubMed  Google Scholar 

  43. Rugo HS, Bardia A, Tolaney SM, et al. Tropics-02: a phase iii study investigating sacituzumab govitecan in the treatment of hr+/her2- metastatic breast cancer. Future Oncol. 2020;16(12):705–15. https://doi.org/10.2217/fon-2020-0163.

    Article  CAS  PubMed  Google Scholar 

  44. Tagawa ST, Balar AV, Petrylak DP, et al. Trophy-u-01: a phase ii open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39(22):2474–85. https://doi.org/10.1200/JCO.20.03489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumagai K, Aida T, Tsuchiya Y, et al. Interstitial pneumonitis related to trastuzumab deruxtecan, a human epidermal growth factor receptor 2-targeting ab-drug conjugate, in monkeys. Cancer Sci. 2020;111(12):4636–45. https://doi.org/10.1111/cas.14686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polakis P. Antibody drug conjugates for cancer therapy. Pharmacol Rev. 2016;68(1):3–19. https://doi.org/10.1124/pr.114.009373.

    Article  CAS  PubMed  Google Scholar 

  47. Matsuno O. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Resp Res. 2012;13(1):39. https://doi.org/10.1186/1465-9921-13-39.

    Article  Google Scholar 

  48. Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs. 2007;67(14):2045–75. https://doi.org/10.2165/00003495-200767140-00006.

    Article  CAS  PubMed  Google Scholar 

  49. Spagnolo P, Bonniaud P, Rossi G, et al. Drug-induced interstitial lung disease. Eur Respir J. 2022;60(4):2102776. https://doi.org/10.1183/13993003.02776-2021.

    Article  PubMed  Google Scholar 

  50. Rugo HS, Tolaney SM, Loirat D, et al. Safety analyses from the phase 3 ascent trial of sacituzumab govitecan in metastatic triple-negative breast cancer. NPJ Breast Cancer. 2022;8(1):98. https://doi.org/10.1038/s41523-022-00467-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seger D, Barker K, McNaughton C. Misuse of the Naranjo adverse drug reaction probability scale in toxicology. Clin Toxicol. 2013;51(6):461–6. https://doi.org/10.3109/15563650.2013.811588.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant number 82304629], and the Natural Science Foundation of Xiamen, China [Grant Numbers 3502Z202371048, 3502Z20227143].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhuang.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corresponding author Prof. Wei Zhuang’s e-mail address is corrected from 'zhuangw8@mail.sysu.edu.cn' to 'zhuangwei1333@gmail.com'.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Xu, J., Liao, Y. et al. Assessing safety concerns of interstitial lung disease associated with antibody-drug conjugates: a real-world pharmacovigilance evaluation of the FDA adverse event reporting system. Int J Clin Pharm (2023). https://doi.org/10.1007/s11096-023-01673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11096-023-01673-y

Keywords

Navigation