Skip to main content

Advertisement

Log in

Clinical Investigation of Large Volume Subcutaneous Delivery up to 25 mL for Lean and Non-Lean Subjects

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the clinical feasibility and tolerability of large volume subcutaneous delivery at different injection depths for lean and non-lean subjects.

Methods

A single-center, randomized, subject-blinded, crossover study in 62 healthy subjects was conducted to evaluate delivery of a 10-cP solution containing hyaluronic acid. Subjects were separated into lean and non-lean cohort by SC thickness. A syringe pump was used to study the effect of different volumes (5, 12, 25 mL) of a viscous placebo solution and needle lengths (6, 9 and 12 mm) delivered at 0.5 mL/min.

Results

Across all treatments, injection sites were observed to have negligible leakage, ~34 kPa of back pressure, and VAS of mild pain with higher pain from needle insertion than during injection. While mild to moderate erythema was the most frequently reported ISR and edema was most prominent for 25 mL injections, all ISRs were resolved within 4 hours post injection. Subjects were unbothered by ISRs across all treatments and rated them as low distress scores (average 1.0–1.5 out of 6).

Conclusion

SC injection of 25 mL is feasible and tolerable using a low-pain formulation for abdomen injection irrespective of subcutaneous thickness and injection depths at a delivery rate of 0.5 mL/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AE:

Adverse Events

BD:

Beckton Dickinson

cP:

Centipoise

CRU:

Clinical Research Unity

DAC:

Data Acquisition Module

DP:

Drug Product

GCP:

Good Clinical Practice

ICH:

International Council for Harmonization

ISP:

Injection Site Pain

ISR:

Injection Site Reaction

LVI:

Large Volume Injector

Ph. Eur.:

European Pharmacopeia

SC:

Subcutaneous

SCIG:

Subcutaneous Immunoglobulin

SE:

Standard Error

USP:

United States Pharmacopeia

VAS:

Visual Analog Scale

WFI:

Water for Injection

References

  1. Collins DS, Sanchez-Felix M, Badkar AV, Mrsny R. Accelerating the development of novel technologies and tools for the subcutaneous delivery of biotherapeutics. J Control Release. 2020;321:475–82.

    Article  CAS  PubMed  Google Scholar 

  2. Jones GB, Collins DS, Harrison MW, Thyagarajapuram NR, Wright JM. Subcutaneous drug delivery: An evolving enterprise. Sci Transl Med. 2017;9(405).

  3. Badkar AV, Gandhi RB, Davis SP, LaBarre MJ. Subcutaneous Delivery of High-Dose/Volume Biologics: Current Status and Prospect for Future Advancements. Drug Des Devel Ther. 2021;15:159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bittner B, Richter W, Schmidt J. Subcutaneous Administration of Biotherapeutics: An Overview of Current Challenges and Opportunities. BioDrugs. 2018;32(5):425–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous Injection Volume of Biopharmaceuticals-Pushing the Boundaries. J Pharm Sci. 2016;105(8):2255–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lingman-Framme J, Fasth A. Subcutaneous immunoglobulin for primary and secondary immunodeficiencies: an evidence-based review. Drugs. 2013;73(12):1307–19.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro R. Subcutaneous immunoglobulin therapy by rapid push is preferred to infusion by pump: a retrospective analysis. J Clin Immunol. 2010;30(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  8. Klein JA, Jeske DR. Estimated Maximal Safe Dosages of Tumescent Lidocaine. Anesth Analg. 2016;122(5):1350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Remington R, Hultman T. Hypodermoclysis to treat dehydration: a review of the evidence. J Am Geriatr Soc. 2007;55(12):2051–5.

    Article  PubMed  Google Scholar 

  10. Turner T, Cassano AM. Subcutaneous dextrose for rehydration of elderly patients–an evidence-based review. BMC Geriatr. 2004;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv. 2007;4(4):427–40.

    Article  CAS  PubMed  Google Scholar 

  12. Locke KW, Maneval DC, LaBarre MJ. ENHANZE((R)) drug delivery technology: a novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv. 2019;26(1):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wasserman RL. Recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin infusion in primary immunodeficiency diseases. Immunotherapy. 2017;9(12):1035–50.

    Article  CAS  PubMed  Google Scholar 

  14. Kang DW, Oh DA, Fu GY, Anderson JM, Zepeda ML. Porcine model to evaluate local tissue tolerability associated with subcutaneous delivery of protein. J Pharmacol Toxicol Methods. 2013;67(3):140–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wynne C, Harvey V, Schwabe C, Waaka D, McIntyre C, Bittner B. Comparison of subcutaneous and intravenous administration of trastuzumab: A phase I/Ib trial in healthy male volunteers and patients with HER2-positive breast cancer. J Clin Pharmacol. 2013;53(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  16. Hill SL, Davies A. Subcutaneous rituximab with recombinant human hyaluronidase in the treatment of non-Hodgkin lymphoma and chronic lymphocytic leukemia. Future Oncol. 2018;14(17):1691–9.

    Article  CAS  PubMed  Google Scholar 

  17. Shpilberg O, Jackisch C. Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br J Cancer. 2013;109(6):1556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A. Tolerability of High-Volume Subcutaneous Injections of a Viscous Placebo Buffer: A Randomized, Crossover Study in Healthy Subjects. AAPS PharmSciTech. 2015;16(5):1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doughty DV, Clawson CZ, Lambert W, Subramony JA. Understanding Subcutaneous Tissue Pressure for Engineering Injection Devices for Large-Volume Protein Delivery. J Pharm Sci. 2016;105(7):2105–13.

    Article  CAS  PubMed  Google Scholar 

  20. Woodley WD, Morel DR, Sutter DE, Pettis RJ, Bolick NG. Clinical evaluation of large volume subcutaneous injection tissue effects, pain, and acceptability in healthy adults. Clin Transl Sci. 2022;15(1):92–104.

    Article  CAS  PubMed  Google Scholar 

  21. Allmendinger A. Opportunities in an Evolving Pharmaceutical Development Landscape: Product Differentiation of Biopharmaceutical Drug Products. Pharm Res. 2021;38(5):739–57.

    Article  CAS  PubMed  Google Scholar 

  22. Bittner B, Schmidt J. Subcutaneous drug delivery devices—Enablers of a flexible care setting. 2021. 159-79.

  23. Prescribing Information: SKYRIZI® (risankizumab-rzaa) injection, for subcutaneous or intravenous use - Initial U.S. Approval: 2019 [Internet]. 2023 [cited 11 April 2023]. Available from: https://www.rxabbvie.com/pdf/skyrizi_pi.pdf.

  24. Prescribing Information: REPATHA (evolocumab) injection, for subcutaneous use - Initial U.S. Approval: 2015 [Internet]. 2019 [cited 11 April 2023]. Available from: https://www.repatha.com/-/media/Themes/Amgen/Repatha-com/Repatha-com/PDFs/repatha_pi_hcp_english.pdf.

  25. Beddoes C. Understanding the market for wearable large volume injectors. Health. 2016;44(1223): 928045.

    Google Scholar 

  26. Bedford T. Meeting emerging stakeholder needs with the subcuject wearable bolus injector. ONdrugDelivery Magazine; 2021. pp. 46–50.

  27. Hooven MD, Joughin J. Wearable Large Volume Injectors Hold Promise for Success in Commercialization of Biologics. J Commercial Biotechnol. 2017;23(3):50–5.

    Article  Google Scholar 

  28. Empaveli Injector (pegcetacoplan) - Instructions for Use [Internet]. 2023 [cited 12 October 2023]. Available from: https://pi.apellis.com/files/IFU_Empaveli_Injector.pdf.

  29. Prescribing Information: Furoscix® (furosemide injection), for subcutaneous use - Initial U.S. Approval: 1968 [Internet]. 2022 [cited 11 April 2023]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209988s000lbl.pdf.

  30. Shi GH, Pisupati K, Parker JG, Corvari VJ, Payne CD, Xu W, et al. Subcutaneous Injection Site Pain of Formulation Matrices. Pharmaceutical Res. 2021;38(5):779–93.

    Article  CAS  Google Scholar 

  31. Kaiser C, Knight A, Nordström D, Pettersson T, Fransson J, Florin-Robertsson E, et al. Injection-site reactions upon Kineret (anakinra) administration: experiences and explanations. Rheumatol Int. 2012;32(2):295–9.

    Article  CAS  PubMed  Google Scholar 

  32. Thomaidou E, Ramot Y. Injection site reactions with the use of biological agents. Dermatol Therap. 2019;32(2):e12817.

    Article  Google Scholar 

  33. Zeltser R, Valle L, Tanck C, Holyst MM, Ritchlin C, Gaspari AA. Clinical, histological, and immunophenotypic characteristics of injection site reactions associated with etanercept: a recombinant tumor necrosis factor α receptor: Fc fusion protein. Archives Derma. 2001;137(7):893–9.

    CAS  Google Scholar 

  34. Rayner JE, Laino AM, Nufer KL, Adams L, Raphael AP, Menzies SW, et al. Clinical Perspective of 3D Total Body Photography for Early Detection and Screening of Melanoma. Front Med (Lausanne). 2018;5:152.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Skvara H, Burnett P, Jones J, Duschek N, Plassmann P, Thirion JP. Quantification of skin lesions with a 3D stereovision camera system: validation and clinical applications. Skin Res Technol. 2013;19(1):e182-90.

    Article  PubMed  Google Scholar 

  36. Ignaut DA, Fu H. Comparison of Insulin Diluent Leakage Postinjection Using Two Different Needle Lengths and Injection Volumes in Obese Patients with Type 1 or Type 2 Diabetes Mellitus. J Diabetes Sci Technol. 2012;6(2):389–93.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huskisson EC. Measurement of pain. J Rheumatol. 1982;9(5):768–9.

    CAS  PubMed  Google Scholar 

  38. Langley GB, Sheppeard H. The visual analogue scale: its use in pain measurement. Rheumatol Int. 1985;5(4):145–8.

    Article  CAS  PubMed  Google Scholar 

  39. Montenegro ML, Braz CA, Mateus-Vasconcelos EL, Rosa-e-Silva JC, Candido-dos-Reis FJ, Nogueira AA, et al. Pain pressure threshold algometry of the abdominal wall in healthy women. Braz J Med Biol Res. 2012;45(7):578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Præstmark KA, Stallknecht B, Jensen ML, Sparre T, Madsen NB, Kildegaard J. Injection Technique and Pen Needle Design Affect Leakage From Skin After Subcutaneous Injections. J Diabetes Sci Technol. 2016;10(4):914–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berteau C, Filipe-Santos O, Wang T, Rojas HE, Granger C, Schwarzenbach F. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance. Med Devices (Auckl). 2015;8:473–84.

    PubMed  PubMed Central  Google Scholar 

  42. Nash P, Vanhoof J, Hall S, Arulmani U, Tarzynski-Potempa R, Unnebrink K, et al. Randomized Crossover Comparison of Injection Site Pain with 40 mg/0.4 or 0.8 mL Formulations of Adalimumab in Patients with Rheumatoid Arthritis. Rheumatology and Therapy. 2016;3(2):257-70.

  43. Bodian Carol A, Freedman G, Hossain S, Eisenkraft James B, Beilin Y. The Visual Analog Scale for Pain: Clinical Significance in Postoperative Patients. Anesthesiology. 2001;95(6):1356–61.

    Article  Google Scholar 

  44. Pager A. 8mm needle – improving subcutaneous chronic drug delivery. ONdrugDelivery Magazine; 2019. pp. 28–32.

  45. Egekvist H, Bjerring P, Arendt-Nielsen L. Pain and mechanical injury of human skin following needle insertions. Eur J Pain. 1999;3(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  46. Arendt-Nielsen L, Egekvist H, Bjerring P. Pain following controlled cutaneous insertion of needles with different diameters. Somatosens Mot Res. 2006;23(1–2):37–43.

    Article  PubMed  Google Scholar 

  47. Gibney MA, Arce CH, Byron KJ, Hirsch LJ. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Current Medical Research and Opinion. 2010;26(6):1519–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the volunteers and all investigators involved in this clinical trial study. Andrew M Ratz, Kaoutar Abbou Oucherif, Amita Datta-Mannan, Michelle Yi Xiu Lim, and Rhea Sirkar contributed to the discussions, design, and execution of the studies. Reshma Bharadwaj contributed to the review of the manuscript.

Funding

Funding for the non-clinical and clinical studies was provided by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Shih.

Ethics declarations

Conflict of Interest

Listed authors are employees of and hold shares in Eli Lilly and Company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, X., Shih, H., Sharma, R. et al. Clinical Investigation of Large Volume Subcutaneous Delivery up to 25 mL for Lean and Non-Lean Subjects. Pharm Res 41, 751–763 (2024). https://doi.org/10.1007/s11095-024-03683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03683-5

Keywords

Navigation