Skip to main content
Log in

Inhibitory Potential of Chemical Constituents from Paeonia suffruticosa Against α-Glucosidase and α-Amylase

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Phytochemical study of the root bark of Paeonia suffruticosa plant led to the isolation and characterization of paeoniflorigenone (1), benzoylpaeoniflorin (2), betulinic acid (3), oleanolic acid (4), β-sitosterol (5), and caffeic acid octadecyl ester (6). The enzymatic activities of compounds 1-6 were evaluated by in vitro inhibition assay of α-glucosidase and α-amylase. Compounds 1-6 with IC50 values ranging from 30 to 180 μM inhibited α-glucosidase more efficiently than the standard compound acarbose (IC50 = 1463.0 ± 29.5 μM). Conversely, these compounds (with IC50 values ranging from 40 to 200 μM) were less potent against α-amylase compared to acarbose (IC50 = 16.6 ± 0.9 μM). Kinetic analysis showed that compound 1 was a mixed-type inhibitor, compounds 3 and 4 were noncompetitive inhibitors, while compound 6 was an uncompetitive inhibitor of glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Y. Hong and K. Y. Pan, J. Syst. Evol., 37(4), 351 – 368 (1999).

    Google Scholar 

  2. S. Wu, D. Wu, and Y. Chen, Chem. Biodivers., 7(1), 90 – 104 (2010).

    Article  CAS  Google Scholar 

  3. L. Zhang, D. C. Li, and L. F. Liu, Int. Immunopharmacol., 72, 413 – 421 (2019).

    Article  CAS  Google Scholar 

  4. Y. Y. Wang, C. Y. Wang, S. T. Wang, et al., Food Chem., 345, 128765 (2021).

    Article  CAS  Google Scholar 

  5. N. Cho, J. Shaw, S. Karuranga, et al., Diabetes Res. Clin. Pract., 138, 271 – 281 (2018).

    Article  CAS  Google Scholar 

  6. S. J. Heo, J. Y. Hwang, J. I. Choi, et al., Eur. J. Pharmacol., 615(1 – 3), 252 – 256 (2009).

  7. H. Ding, X. Wu, J. Pan, et al., J. Agric. Food Chem., 66(27), 7065 – 7075 (2018).

    Article  CAS  Google Scholar 

  8. A. Demir, H. Turumtay, M. Emirik, et al., Med. Chem. Res., 28(12), 2232 – 2245 (2019).

    Article  CAS  Google Scholar 

  9. M. Fomogne-Fodjo, D. Ndinteh, D. Olivier, et al., J. Ethnopharmacol., 195, 238 – 245 (2017).

    Article  CAS  Google Scholar 

  10. D. Quaglio, S. Corradi, S. Erazo, et al., ACS Med. Chem. Lett., 11(5), 760 – 765 (2020).

    Article  CAS  Google Scholar 

  11. N. T. Hiep, J. Kwon, D. W. Ki m, et al., Tetrahedron, 73(19), 2747 – 2759 (2017).

  12. J. C. Menezes, N. Edraki, S. P. Kamat, et al., J. Agric. Food Chem., 65(33), 7228 – 7239 (2017).

    Article  CAS  Google Scholar 

  13. L. Okutan, K. T. Kongstad, A. K. Jager, et al., J. Agric. Food Chem., 62(47), 11465 – 11471 (2014).

    Article  CAS  Google Scholar 

  14. Y. S. Lin, C. R. Chen, W. H. Wu, et al., J. Agric. Food Chem., 63(28), 6393 – 6401 (2015).

    Article  CAS  Google Scholar 

  15. V. Morocho, A. Valle, J. Garcia, et al., Molecules, 23(1), 146 (2018).

    Article  Google Scholar 

  16. Y. Meng, A. Su, S. Yuan, et al., Plant Foods Hum. Nutr., 71(4), 444 – 449 (2016).

    Article  CAS  Google Scholar 

  17. L. Zeng, G. Zhang, S. Lin, et al., J. Agric. Food Chem., 64(37), 6939 – 6949 (2016).

    Article  CAS  Google Scholar 

  18. Y. Q. Li, F. C. Zhou, F. Gao, et al., J. Agric. Food Chem., 57(24), 11463 – 11468 (2009).

    Article  CAS  Google Scholar 

  19. H. Ding, X. Hu, X. Xu, et al., Int. J. Biol. Macromol., 107, 1844 – 1855 (2018).

    Article  CAS  Google Scholar 

  20. L. Zeng, H. Ding, X. Hu, et al., Food Chem., 271, 70 – 79 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms Lih-Mei Sheu and Ms Shu-Chi Lin, Instrumentation Centre of the College of Science, National Chung Hsing University and National Tsing Hua University for mass spectrometry (MS) measurements. The nuclear magnetic resonance spectroscopy (NMR) measurements were performed in the Precision Instruments Centre of the National Pingtung University of Science and Technology.

FUNDING

This work was supported by the Ministry of Science and Technology of Taiwan (Grants MOST 105-2320-B-020-002-MY3 and MOST 108-2320-B-020-003) and NPUST-KMU Joint Research Project (KP-109005).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien-Hsing Lee or Chi-I Chang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, PC., Dlamini, B.S., Chen, CR. et al. Inhibitory Potential of Chemical Constituents from Paeonia suffruticosa Against α-Glucosidase and α-Amylase. Pharm Chem J 56, 821–826 (2022). https://doi.org/10.1007/s11094-022-02715-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02715-x

Keywords

Navigation