Skip to main content
Log in

In Vitro Cytotoxicity of Methano[1,2,4]Triazolo-[1,5-C][1,3,5]Benzoxadiazocine Derivatives and Their Effects on Nitrite and Prostaglandin E2 (PGE2) Levels

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Biological activity of the Biginelli type heterocycles is extremely broad and provides a suitable platform for the discovery of potent small drug-like molecules. Such activity of 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives is widely known, whereas their oxygen-bridged analogs, benzoxadiazocines, are presented quite rarely in the literature. In this study, a series of new methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine derivatives (3a-3j) were evaluated in vitro for their activities and molecular docking features. According to the molecular docking study, COX-2 and PGE2S appeared as likely targets responsible for the reduced PGE2 levels caused by the title compounds. The cytotoxicity of compounds 3a-3g, 3j was evaluated on RAW 264.7 murine macrophage cell line by MTT assay after treatment for 24 h with various doses (25, 50, 100 μM) of these compounds. Then, compounds admitting cell viability higher than 70% were tested for their anti-inflammatory activity at non-toxic doses by evaluating the nitrite level of cell supernatants with the Griess reagent. Compounds 3c and 3f demonstrated significant inhibition of nitrite production (by 29 and 25%, respectively) at 100 μM (p < 0.05). These compounds significantly inhibited PGE2 production, thus suggesting analgesic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. C. Tron, A. Minassi, and G. Appendino, Eur. J. Org. Chem., 28, 5541 – 5550 (2011). https: //doi.org/https://doi.org/10.1002/ejoc.201100661

  2. S. Sandhu and J. S. Sandhu, Arkivoc (i) 66 – 133 (2012).

  3. J. P. Wan and Y. Pan, Mini-Rev. Med. Chem. 12, 337 – 349 (2012). https: //doi.org/https://doi.org/10.2174/138955712799829267

  4. A. de Fatima, T. C. Braga, L. S. da Neto, et al., J. Adv. Res. 6(3), 363 – 373 (2015). https: doi.org/https://doi.org/10.1016/j.jare.2014.10.006

  5. H. Nagarajaiah, A. Mukhopadhyay, and J. N. Moorthy, Tetrahedron Lett. 57, 5135 – 5149 (2016). https: //doi.org/https://doi.org/10.1016/j.tetlet.2016.09.047

  6. O. P. Shkurko, T. G. Tolstikova, and V. F. Sedova, Russ. Chem. Rev., 85, 1056 – 1096 (2016). https: //doi.org/https://doi.org/10.1070/RCR4586

  7. E. M. H. Abbas, S. M. Abdallah, M. H. Abdoh, et al., Turk. J. Chem. 32, 297 – 304 (2008).

    CAS  Google Scholar 

  8. L. H. S. Matos, F. T. Masson, L. A. Simeoni, et al., Eur. J. Med. Chem., 143 1779 – 1789 (2018). https: //doi.org/https://doi.org/10.1016/j.ejmech.2017.10.073

  9. J. J. Baldwin, D. A. Claremon, and D. E. McClure, US Patent 4609494A (1986).

  10. İ. S. Zorkun, S. Saraç, S. Çelebi, et al., Bioorg. Med. Chem., 14, 8582 – 8589 (2006). https: //doi.org/https://doi.org/10.1016/j.bmc.2006.08.031

  11. B. L. Finkelstein, E. A. Benner, and M. C. Hendrixson, et al., Bioorg. Med. Chem., 10, 599 – 613 (2002). https: //doi.org/https://doi.org/10.1016/S0968-0896(01)00326-1

  12. W. S. El-Hamouly, A-M. A. El-Khamry, and E. M. H. Abbas, Indian J. Chem., 45B, 2091 – 2098 (2006).

  13. M. Yar, M. Bajda, L. Shahzadi, et al., Bioorg. Chem., 54, 96 – 104 (2014). https: //doi.org/https://doi.org/10.1016/j.bioorg.2014.05.003

  14. G. Karageorgis, E. S. Reckzeh, and J. Ceballos, et al., Nature Chem., 10, 1103 – 1111 (2018). https: //doi.org/https://doi.org/10.1038/s41557-018-0132-6

  15. N. Jankoviæ, T. J. Ristovski, M. Vraneš, et al. Bioorg. Chem., 86, 569 – 582 (2019). https: //doi.org/https://doi.org/10.1016/j.bioorg.2019.02.026

  16. N. Y. Gorobets, Y. V. Sedash, K. S. Ostras, et al. Tetrahedron Lett., 51, 2095 – 2098 (2010). https: //doi.org/https://doi.org/10.1016/j.tetlet.2010.02.045

  17. Y. V. Sedash, N. Y. Gorobets, V. A. Chebanov, et al., RSC Adv., 2, 6719 – 6728 (2012). https: //doi.org/https://doi.org/10.1039/C2RA20195J

  18. V. A. Peshkov, A. A. Peshkov, O. P. Pereshivko, et al. ACS Comb. Sci., 16, 535 – 542 (2014). https: //doi.org/https://doi.org/10.1021/co5000695

  19. M. Kondratiuk, N. Y. Gorobets, Y. V. Sedash, et al., Molbank, 2, M898 (2016). https: //doi.org/https://doi.org/10.3390/M898

  20. M. K. Gümüş, N. Y. Gorobets, Y. V. Sedash, et al., Tetrahedron Lett., 58, 3446 – 3448 (2017). https: //doi.org/https://doi.org/10.1016/j.tetlet.2017.07.071

  21. S. A. Komykhov, A. A. Bondarenko, V. I. Musatov, et al., Chem. Heterocycl. Comp., 53, 378 – 380 (2017). https: //doi.org/https://doi.org/10.1007/s10593-017-2059-z

  22. M. V. Murlykina, A. D. Morozova, I. M. Zviagin, et al., Front. Chem., 6, 527 (2018) https: //doi.org/https://doi.org/10.3389/fchem.2018.00527

  23. Y. I. Sakhno, M. V. Murlykina, O. I. Zbruyev, et al., Beilstein J. Org. Chem., 16, 281 – 289 (2020). https: //doi.org/https://doi.org/10.3762/bjoc.16.27

  24. M. V. Murlykina, Y. I. Sakhno, S. M. Desenko, et al., Eur. J. Org. Chem., 20, 4481 – 4492 (2015). https: //doi.org/https://doi.org/10.1002/ejoc.201500469

  25. M. K. Gümüş, N. Y. Gorobets, Y. V. Sedash, et al., Chem. Heterocyc. Comp., 53, 1261 – 1267 (2017). https: //doi.org/https://doi.org/10.1007/s10593-018-2204-3

  26. M. K. Gümüş, S. Kansýz, E. Aydemir, et al., J. Mol. Struct., 1168, 280 – 290 (2018). https: //doi.org/https://doi.org/10.1016/j.molstruc.2018.05.032

  27. M. K. Gümüş, S. Kansýz, C. Y. Ataol, et al., Acta Cryst. E, 75, 492 – 498 (2019). https: //doi.org/https://doi.org/10.1107/S2056989019003700

  28. M. K. Gümüş, S. Kansýz, N. Dege, et al., Acta Cryst. E, 74, 1211 – 1214 (2018). https: //doi.org/https://doi.org/10.1107/S2056989018010848

  29. E. Aydemir, S. Kansýz, M. K. Gümüş, et al., Acta Cryst. E, 74, 367 – 370 (2018). https: //doi.org/https://doi.org/10.1107/S2056989018002621

  30. E. Tornqvist, A. Annas, B. Granath, et al., PLoS One, 9(7), e101638 (2014). doi:https://doi.org/10.1371/journal.pone.0101638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Koksal, A. Dedeoglu-Erdogan, M. Bader, et al., Arch. Pharm., e2000469 (2021). https: //doi.org/https://doi.org/10.1002/ardp.202000469

  32. I. Erol, N. Okur, D. Orak, et al., Pharm. Dev. Tech., 25(8), 909 – 918 (2020). https: //doi.org/https://doi.org/10.1080/10837450.2020.1765180

  33. K. Buran, R. Reis, H. Sipahi, et al., Arch. Pharm., e2000354 (2021). https: //doi.org/https://doi.org/10.1002/ardp.202000354

  34. A. K. Kiemer and A. M. Vollmar, Endocrinology, 138, 4282 – 4290 (1997). https: //doi.org/https://doi.org/10.1210/endo.138.10.5459

  35. P. M. Giang, N. T. Nga, B. Van Trung, et al., Pharm. Chem. J. 53, 628 – 634 (2019). https: //doi.org/https://doi.org/10.1007/s11094-019-02051-7

  36. C. R. Lin, F. Amaya, L. Barrett, et al., J. Pharm. Exp. Ther., 319, 1096 – 1103 (2006). https: //doi.org/https://doi.org/10.1124/jpet.106.105569

  37. E. Harder,W. Damm, J. Maple, et al., J. Chem. Theory Comput., 12, 281 – 296 (2016). https: //doi.org/https://doi.org/10.1021/acs.jctc.5b00864

  38. T. Yamada, J. Komoto, K. Watanabe, et al., J Mol Biol., 348, 1163 – 1176 (2005). https: //doi.org/https://doi.org/10.1016/j.jmb.2005.03.035

  39. K. Gupta, B. S. Selinsky, and P. J. Loll, Acta Cryst. D, 62, 151 – 156 (2006). https: //doi.org/https://doi.org/10.1107/S0907444905036309

  40. B. J. Orlando and M. G. Malkowski, J. Biol. Chem., 291, 15069 – 15081 (2016). https: //doi.org/https://doi.org/10.1074/jbc.M116.725713

  41. H. M. Berman, J.Westbrook, Z. Feng, et al., Nucleic Acids Res., 28, 235 – 242 (2000). https: //doi.org/https://doi.org/10.1093/nar/28.1.235

  42. G. M. Sastry, M. Adzhigirey, T. Day, et al., J. Comput. Aided Mol. Des., 27, 221 – 234 (2013). https: //doi.org/https://doi.org/10.1007/s10822-013-9644-8

  43. R. A. Friesner, R. B. Murphy, M. P. Repasky, et al., J. Med. Chem., 49, 6177 – 6196 (2006). https: //doi.org/https://doi.org/10.1021/jm051256o

  44. C. A. Lipinski, F. Lombardo, B. W. Dominy, et al., Adv. Drug Deliv. Rev., 46, 3 – 26 (2001). https: //doi.org/https://doi.org/10.1016/S0169-409X(96)00423-1

  45. D. F. Veber, S. R. Johnson, H. Y. Cheng, et al., J. Med. Chem., 45, 2615 – 2623 (2002). https: //doi.org/https://doi.org/10.1021/jm020017n

  46. J. Baell and M. A. Walters. Nature, 513(7519), 481 – 483 (2014).

    Article  CAS  Google Scholar 

  47. S. Sari, Hacettepe Uni. J. Fac. Pharm., 40, 34 – 47 (2020). https: //dergipark.org.tr/en/pub/hujpharm/issue/54931/722540

  48. Z. Fang, Y. N. Song, P. Zhan, et al., Future Med. Chem., 6, 885 – 901 (2014). https: //doi.org/https://doi.org/10.4155/fmc.14.50

  49. D. L. Simmons, R. M. Botting, and T. Hla, Pharm. Rev., 56, 387 – 437 (2004). https: //doi.org/https://doi.org/10.1124/pr.56.3.3

  50. M. Murakami and I. Kudo, Curr. Pharm. Des., 12, 943 – 954 (2006). https: //doi.org/https://doi.org/10.2174/138161206776055912

  51. J. P. Iyer, P. K. Srivastava, R. Dev, et al., Expert Opinion Therapeutic Targets, 13, 849 – 865 (2009). https: //doi.org/https://doi.org/10.1517/14728220903018932

  52. S. W. Rowlinson, J. R. Kiefer, J. J. Prusakiewicz, et al., J. Biol. Chem., 278, 45763 – 45769 (2003). https: //doi.org/https://doi.org/10.1074/jbc.M305481200

  53. B. J. Orlando and M. G. Malkowski, Acta Cryst. F, 72, 772 – 776 (2016). https: //doi.org/https://doi.org/10.1107/S2053230X16014230

  54. M. J. Lucido, B. J. Orlando, A. J. Vecchio, et al., Biochemistry, 55, 1226 – 1238 (2016). https: //doi.org/https://doi.org/10.1021/acs.biochem.5b01378

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kemal Gümüş.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, İ.S., Gümüş, M.K., Gorobets, N.Y. et al. In Vitro Cytotoxicity of Methano[1,2,4]Triazolo-[1,5-C][1,3,5]Benzoxadiazocine Derivatives and Their Effects on Nitrite and Prostaglandin E2 (PGE2) Levels. Pharm Chem J 56, 769–776 (2022). https://doi.org/10.1007/s11094-022-02708-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02708-w

Keywords

Navigation