Skip to main content
Log in

Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Strobilanthes cusia (Nees) Kuntze is commonly used as a traditional medicine with widespread health benefits. This work proposed S. cusia leaves as a potential source of phenolic compounds for extraction and examined the antioxidant capacity of the phenolic-rich extract. Several solvents (ethanol, methanol, and water) were screened as extractants. Among these, methanol showed the highest extraction efficiency. Single-factor experiments and response surface methodology were then applied to optimize the extraction conditions. The maximum total phenolic content of 64.86 ± 0.32 mg GAE/g was obtained under the following extraction conditions: extraction time, 2.27 h; methanol-to-material ratio, 9.55 mL/g; aqueous methanol concentration, 63.54%. The phenolic-rich extract showed potential antioxidant capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical at an IC50 value of 464.59 μg/mL. This study shows that S. cusia leaves are rich in phenolic constituents and suggests S. cusia leaf extracts as promising antioxidant agents for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. P. Cejas, E. Casado, C. Belda-Iniesta, et al., Cancer Causes Control, 15, 707 – 719 (2004).

    Article  Google Scholar 

  2. H. C. Nguyen, H. N. T. Nguyen, M. Y. Huang, et al., J. Food Process. Preserv., 45, e15221 (2021).

    CAS  Google Scholar 

  3. K. N. Prasad, B. Yang, S. Yang, et al., Food Chem., 116, 1 – 7 (2009).

    Article  Google Scholar 

  4. F. Khaliullin, Z. K. Mamatov, G. Timirkhanova, et al., Pharm. Chem. J., 54, 891 – 896 (2020).

    Article  CAS  Google Scholar 

  5. D. C. Pham, H. C. Nguyen, T. H. L. Nguyen, et al., BioMed Res. Int., 2020, 3497107 (2020).

    Article  Google Scholar 

  6. A. Mecheri, A. Amrani, W. Benabderrahmane, et al., Pharm. Chem. J., 54, 1150 – 1156 (2021).

    Article  CAS  Google Scholar 

  7. T. Shirshova, K. Bezmaternykh, I. Beshlei, et al., Pharm. Chem. J., 54, 622 – 625 (2020).

    Article  CAS  Google Scholar 

  8. T. H. Do, H. B. Truong, and H. C. Nguyen, Pharm. Chem. J., 54, 162 – 169 (2020).

    Article  CAS  Google Scholar 

  9. S. Suliman, S. Yagi, A. A. Elbashir, et al., Process Biochem., 101, 169 – 178 (2021).

    Article  CAS  Google Scholar 

  10. B. R. Albuquerque, S. A. Heleno, M. B. P. Oliveira, et al., Food Funct., 12, 14 – 29 (2021).

    Article  CAS  Google Scholar 

  11. T. Mehmood, H. Arshad, S. Nawaz, et al., Pharm. Chem. J., 54, 631 – 641 (2020).

    Article  CAS  Google Scholar 

  12. H. Yu, T. N. Li, Q. Ran, et al., J. Ethnopharmacol., 265, 113325 (2021).

    Article  CAS  Google Scholar 

  13. W. Gu, Y. Zhang, X. J. Hao, et al., J. Nat. Prod., 77, 2590 – 2594 (2014).

    Article  CAS  Google Scholar 

  14. Y. L. Ho, K. C. Kao, H. Y. Tsai, et al., Am. J. Chinese Med., 31, 61 – 69 (2003).

    Article  Google Scholar 

  15. Y. C. Tsai, C. L. Lee, H. R. Yen, et al., Biomolecules, 10, 366 (2020).

    Article  CAS  Google Scholar 

  16. C. L. Lee, C. M. Wang, H. C. Hu, et al., Phytochemistry, 162, 39 – 46 (2019).

    Article  CAS  Google Scholar 

  17. D. H. Truong, D. H. Nguyen, N. T. A. Ta, et al., J. Food Qual., 2019, 8178294 (2019).

    Article  Google Scholar 

  18. K. X. Zhu, C. X. Lian, X. N. Guo, et al., Food Chem., 126, 1122 – 1126 (2011).

    Article  CAS  Google Scholar 

  19. T. H. Do and H. C. Nguyen, BioTechnologia, 100, 219 – 226 (2019).

    Article  CAS  Google Scholar 

  20. L. Iglesias-Carres, A. Mas-Capdevila, F. I. Bravo, PLoS One, 14, e0211267 (2019).

    Article  CAS  Google Scholar 

  21. E. Nakilcioðlu-Taþ and S. Ötleþ, J. Food Measure. Charact., 13, 1497 – 1507 (2019).

    Article  Google Scholar 

  22. Z. Fan, L. Li, X. Bai, et al., Food Sci. Nutr., 7, 1786 – 1794 (2019).

    Article  CAS  Google Scholar 

  23. C. B. d. C. de Sousa, G. L. dos Anjos, R. S. Nobrega, Microchem. J., 159, 105525 (2020).

  24. M. Iftikhar, H. Zhang, A. Iftikhar, et al., LWT Food Sci. Technol., 134, 110243 (2020).

    Article  CAS  Google Scholar 

  25. Y. Benchikh, A. Zaoui, R. Derbal, et al., J. Food Measure. Charact., 13, 883 – 891 (2019).

    Article  Google Scholar 

  26. S. Wang, A. H. M. Lin, Q. Han, et al., Processes, 8, 1665 (2020).

    Article  CAS  Google Scholar 

  27. Y. Bao, L. Reddivari, and J. Y. Huang, LWT Food Sci. Technol., 133, 109970 (2020).

    Article  CAS  Google Scholar 

  28. A. Oreopoulou, G. Goussias, D. Tsimogiannis, et al., Food Bioprod. Process., 123, 378 – 389 (2020).

    Article  CAS  Google Scholar 

  29. A. Weremfo, F. Adulley, and M. Adarkwah-Yiadom, J. Anal. Methods Chem., 2020, 7541927 (2020).

    Article  Google Scholar 

  30. H. Hosseini, S. Bolourian, E. Yaghoubi Hamgini, et al., J. Food Process. Preserv., 42, e13778 (2018).

    Article  Google Scholar 

  31. T. S. M. de Freitas, G. M. de Rodrigues, F. M. Fakhouri, et al., J. Food Process. Preserv., 45, e15260 (2021).

    Article  Google Scholar 

  32. E. De Santiago, I. Juaniz, C. Cid, et al., Food Anal. Methods, (2021); doi: https://doi.org/10.1007/s12161-020-01946-6.

  33. G. A. Sumampouw, C. Jacobsen, and A. T. Getachew, J. Appl. Phycol., (2021); doi: https://doi.org/10.1007/s10811-020-02362-3.

  34. B. S. Ðorðeviæ, Z. B. Todoroviæ, D. Z. Troter, et al., J. Food Measure. Charact., 15, 1931 – 1938 (2021).

    Article  Google Scholar 

  35. F. Brahmi, F. Merchiche, S. Mokhtari, et al., J. Food Process. Preserv., 45, e15126 (2021).

    Article  CAS  Google Scholar 

  36. H. C. Nguyen, K. H. Lin, M. Y. Huang, et al., Not. Bot. Horti. Agrobo., 46, 457 – 465 (2018).

    Article  CAS  Google Scholar 

  37. H. C. Nguyen, D. P. Vuong, N. T. T. Nguyen, et al., LWT Food Sci. Technol., 133, 109992 (2020).

    Article  CAS  Google Scholar 

  38. S. M. Hue, A. N. Boyce, and C. Somasundram, Aust. J. Crop Sci., 6, 375 (2012).

    CAS  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Chinh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.C.V., Trinh, L.T.T., Nguyen, K.L. et al. Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity. Pharm Chem J 56, 374–380 (2022). https://doi.org/10.1007/s11094-022-02646-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02646-7

Keywords

Navigation