Skip to main content

Advertisement

Log in

Structure-Based Design and Structure-Activity Relationship Analysis of Small Molecules Inhibiting Bcl-2 Family Members

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Based on a Mcl-1/Bcl-2 dual inhibitor (S1) previously reported by our group, structure-directed molecular design and structure-activity relationship (SAR) analysis were performed to investigate structural features contributing to the Mcl-1/Bcl-2 binding selectivity and affinity. A series of S1 derivatives with various pharmacophores were synthesized, and among these a selective Mcl-1 inhibitor A4 with 5-fold selectivity over Bcl-2 (Ki = 0.37 ± 0.07 μM vs. 1.87 ± 0.21 μM) and a dual Mcl-1/Bcl-2 inhibitor B3 with optimized affinities (Ki = 0.35 ± 0.01 μM for Mcl-1 and 0.81 ± 0.01 μM for Bcl-2) were revealed by fluorescence polarization assay (FPA). The SAR data and binding modes of A4 and B3 examined by molecular docking showed that the p1 pocket having different geometry and binding features between Mcl-1 and Bcl-2 contributed to the specific binding properties of Mcl-1, and the spatial conserved N223 on Mcl-1 and N143 on Bcl-2 were the key residues to form additional hydrogen bonds with the ester of B3. Finally, the apoptosis-inducing potencies of A4 and B3 in the μM range against K562 and MCF-7 cancer cells were consistent with their binding selectivity determined in vitro, and only weak killing was found for these compounds in the normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Scheme 1.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Kuwana, L. E. King, K. Cosentino, et al., J. Biol. Chem., 295(6), 1623 – 1636 (2020).

    Article  CAS  Google Scholar 

  2. E. M. Kim, C. H. Jung, J. Y. Song, et al., Cancer Lett., 424, 127 – 135 (2018).

    Article  CAS  Google Scholar 

  3. R. J. Youle and A. Strasser, Nat. Rev. Mol. Cell Biol., 9(1), 47 – 59 (2008).

    Article  CAS  Google Scholar 

  4. C. Bogner, J. Kale, J. Pogmore, et al., Mol. Cell., 77(4), 901 – 912 (2020).

    Article  CAS  Google Scholar 

  5. L. A. Gillies and T. Kuwana, J. Cell. Biochem., 115(4), 632 – 640 (2014).

    Article  CAS  Google Scholar 

  6. A. M. Hossini and J. Eberle, Biochem. Pharmacol., 76(11), 1612 – 1619 (2008).

    Article  CAS  Google Scholar 

  7. M. Kvansakul and M. G. Hinds, Methods Enzymol., 544, 49 – 74 (2014).

    Article  CAS  Google Scholar 

  8. A. J. Souers, J. D. Leverson, E. R. Boghaert, et al., Nat. Med., 19(2), 202 – 208 (2013).

    Article  CAS  Google Scholar 

  9. E. D. Deeks, Drugs, 76(9), 979 – 987 (2016).

    Article  CAS  Google Scholar 

  10. T. Song, M. Zhang, P. Liu, et al., Biochem. Pharmacol., 155, 102 – 109 (2018).

    Article  CAS  Google Scholar 

  11. K. Bojarczuk, B. K. Sasi, S. Gobessi, et al., Blood, 127(25), 3192 – 3201 (2016).

    Article  CAS  Google Scholar 

  12. S. Kehr, T. Haydn, A. Bierbrauer, et al., Cancer Lett., 482, 19 – 32 (2020).

    Article  CAS  Google Scholar 

  13. A. D. Blasio, R. Vento, and R. D. Fiore, J. Cell. Physiol., 233(11), 8482 – 8498 (2018).

    Article  Google Scholar 

  14. J. M. Eichhorn, S. E. Alford, N. Sakurikar, et al., Exp. Cell. Res., 322(2), 415 – 424 (2014).

    Article  CAS  Google Scholar 

  15. J. Zhu, Z. Wang, Z. Guo, et al., Arch. Pharm., 353(5), e2000005 (2020).

    Article  CAS  Google Scholar 

  16. J. R. Lever and E. A. Fergason-Cantrell, Pharmacol. Res., 142, 87 – 100 (2019).

    Article  CAS  Google Scholar 

  17. M. F. van Delft, A. H. Wei, K. D. Mason, et al., Cancer Cell., 10(5), 389 – 399 (2006).

    Article  Google Scholar 

  18. J. D. Leverson, H. Zhang, J. Chen, et al., Cell Death. Dis., 6, e1590 (2015).

    Article  CAS  Google Scholar 

  19. F. Yan, X. X. Cao, H. X. Jiang, et al., J. Med. Chem., 53(15), 5502 – 5510 (2010).

    Article  CAS  Google Scholar 

  20. Z. Zhang, T. Song, T. Zhang, et al., Int. J. Cancer, 128(7), 1724 – 1735 (2011).

    Article  CAS  Google Scholar 

  21. C. L. Day, L. Chen, S. J. Richardson, et al., J. Biol. Chem., 280(6), 4738 – 4744 (2005).

    Article  CAS  Google Scholar 

  22. V. V. Senichkin, A. Y. Streletskaia, B. Zhivotovsky, et al., Trends Cell. Biol., 29(7), 549 – 562 (2019).

  23. M. D. Boersma, H. S. Haase, K. J. Peterson-Kaufman, et al., J. Am. Chem. Soc., 134(1), 315 – 323 (2012).

    Article  CAS  Google Scholar 

  24. D. Merino, G. L. Kelly, G. Lessene, et al., Cancer Cell., 34(6), 879 – 891 (2018).

    Article  CAS  Google Scholar 

  25. S. Shukla, S. Saxena, B. K. Singh, et al., Eur. J. Cell. Biol., 96(8), 728 – 738 (2017).

    Article  CAS  Google Scholar 

  26. S. M. Ivanov, R. G. Huber, J. Warwicker, et al., Structure, 24(11), 2024 – 2033 (2016).

    Article  CAS  Google Scholar 

  27. L. Delgado-Soler, M. Pinto, K. Tanaka-Gil, et al., J. Chem. Inf. Model., 52(8), 2107 – 2118 (2012).

    Article  CAS  Google Scholar 

  28. Z. Zhang, P. Su, X. Li, et al., Arch. Pharm., 348(2), 89 – 99 (2015).

    Article  CAS  Google Scholar 

  29. Z. Wang, W. Xu, T. Song, et al., Arch. Pharm., 350(1), e1600251 (2017).

    Article  Google Scholar 

  30. Z. Guo, T. Song, Z. Xue, et al., Eur. J. Pharm. Sci., 142, 105105 (2020).

    Article  CAS  Google Scholar 

  31. Z. Zhang, H. Yang, G. Wu, et al., Eur. J. Med. Chem., 46(9), 3909 – 3916 (2011).

    Article  CAS  Google Scholar 

  32. Z. Zhang, G. Wu, F. Xie, et al., J. Med. Chem., 54(4), 1101 – 1105 (2011).

    Article  CAS  Google Scholar 

  33. T. Song, X. Li, Y. Yang, et al., Bioorg. Med. Chem., 22(1), 663 – 664 (2014).

    Article  CAS  Google Scholar 

  34. X. Zhang, Z. Wang, Z. Guo, et al., Chem. Biochem., 22(2), 326 – 329 (2021).

    CAS  Google Scholar 

  35. T. Song, Z. Wang, F. Ji, et al., Angew. Chem. Int. Ed. Engl., 55(46), 14250 – 14256 (2016).

    Article  CAS  Google Scholar 

  36. N. He, P. Liu, Z. Wang, et al., Biochem. Biophys. Res. Commun., 512(4), 921 – 926 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (81903462 and 82073703), the China Postdoctoral Science Foundation (2018M641694), and the Fundamental Research Funds for the Central University (DUT20LK28 and DUT20YG133).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqian Wang or Zhichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Margulis, B.A., Wang, Z. et al. Structure-Based Design and Structure-Activity Relationship Analysis of Small Molecules Inhibiting Bcl-2 Family Members. Pharm Chem J 56, 329–338 (2022). https://doi.org/10.1007/s11094-022-02639-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02639-6

Keyword

Navigation