Skip to main content
Log in

Assessment of radiological hazards and chemical composition of cement produced in South Korea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural radioactivity and chemical composition of different cement samples produced in South Korea were investigated using gamma-ray and X-ray fluorescence spectrometers. The absolute detector efficiency was determined using voluminous radioactive source and EFFTRAN program. Analytical methodologies for the determination of the chemical composition and specific activity of radionuclides were validated using NIST and IAEA reference materials. Radiological indices and parameters were calculated to estimate the radiological risk from the building materials. The results demonstrate that the natural radioactivity levels in cement are lower than the critical values and global mean values. The approximate source apportionment of NORs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martínez S, Pérez-Villarejo L, Eliche-Quesada D, Sánchez-Soto PJ, Christogerou A, Kanellopoulou DG, Angelopoulos GN (2020) New waste-based clinkers for the preparation of low-energy cements. A step forward toward circular economy. Int J Appl Ceram Technol 17(1):12–21. https://doi.org/10.1111/ijac.13390

    Article  CAS  Google Scholar 

  2. Eštoková A, Palaščáková L (2013) Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. Int J Environ Res Public Health 10(12):7165–7179. https://doi.org/10.3390/ijerph10127165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schroeyers W (2017) Naturally occurring radioactive materials in construction: integrating radiation protection in reuse (COST action Tu1301 NORM4BUILDING). Woodhead Publ. https://doi.org/10.1016/C2016-0-00665-4

    Article  Google Scholar 

  4. Aragaw TA (2020) Cement types, admixtures, and technical procedures of cement analysis: an introduction. Synth Lect Chem Eng Biochem Eng 2(1):1–67. https://doi.org/10.2200/S00947ED1V01Y201908CHE002

    Article  Google Scholar 

  5. Khelifi S, Ayari F, Tiss H, Chehimi DBH (2017) X-ray fluorescence analysis of Portland cement and clinker for major and trace elements: accuracy and precision. J Aust Ceram Soc 53:743–749. https://doi.org/10.1007/s41779-017-0087-x

    Article  CAS  Google Scholar 

  6. OECD (1979) Exposition to radiation from the natural radioactivity in building materials. OECD, Paris

    Google Scholar 

  7. UNSCEAR (2000) Sources and effects of ionizing radiation: report to the general assembly, with scientific annexes, vol 1. United Nations, New York, pp 1–654. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf

  8. Shala F, Xhixha G, Xhixha MK, Hasani F, Xhixh E, Shyti M, Kuqi DS, Prifti D, Qafleshi M (2017) Natural radioactivity in cements and raw materials used in Albanian cement industry. Environ Earth Sci 76:670. https://doi.org/10.1007/s12665-017-7014-x

    Article  CAS  Google Scholar 

  9. Papastefanou C, Stoulos S, Manolopoulou M (2005) The radioactivity of building materials. J Radioanal Nucl Chem 266(3):367–372. https://doi.org/10.1007/s10967-005-0918-z

    Article  CAS  Google Scholar 

  10. Asaduzzaman K, Mannan F, Khandaker MU, Farook MS, Elkezza A, Amin YBM, Sharma S, Kassim HBA (2015) Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi Dwellings. PLoS ONE 10(10):0140667. https://doi.org/10.1371/journal.pone.0140667

    Article  CAS  Google Scholar 

  11. Turhan S (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J Environ Radioact 99(2):404–414. https://doi.org/10.1016/j.jenvrad.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Sas Z, Vandevenne N, Doherty R, Vinai R, Kwasny J, Russell M, Sha W, Soutsos M, Schroeyers W (2019) Radiological evaluation of industrial residues for construction purposes correlated with their chemical properties. Sci Total Environ 658:141–151. https://doi.org/10.1016/j.scitotenv.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  13. Lee S-C, Kim C-K, Lee D-M, Kang H-D (2001) Natural radionuclides contents and radon exhalation rates in building materials used in South Korea. Radiat Prot Dosim 94(3):269–274. https://doi.org/10.1093/oxfordjournals.rpd.a006499

    Article  CAS  Google Scholar 

  14. Jang M, Chung KH, Ji Y-Y, Lim JM, Kim ChJ, Kang MJ, Choi GS (2016) Indoor external and internal exposure due to building materials containing NORM in Korea. J Radioanal Nucl Chem 307(3):1661–1666. https://doi.org/10.1007/s10967-015-4375-z

    Article  CAS  Google Scholar 

  15. Kim J, Tae S, Kim R (2018) Theoretical study on the production of environment-friendly recycled cement using inorganic construction wastes as secondary materials in South Korea. Sustainability 10(12):4449. https://doi.org/10.3390/su10124449

    Article  Google Scholar 

  16. Eastell J, Willis JP (1993) A low dilution fusion technique for the analysis of geological samples. 2—Major and minor element analysis and the use of influence/alpha coefficients. X-ray Spectrom 22(2):71–79. https://doi.org/10.1002/xrs.1300220204

    Article  CAS  Google Scholar 

  17. Sieber J, Broton D, Fales C, Leigh S, MacDonald B, Marlow A, Nettles S, Yen J (2002) Standards reference materials for cements. Cem Concr Res 32(12):1899–1906. https://doi.org/10.1016/S0008-8846(02)00896-7

    Article  CAS  Google Scholar 

  18. Anagnostopoulos DF (2018) X-ray emission spectroscopy optimization for chemical speciation in laboratory. Spectrochimica Acta Part B 148:83–91. https://doi.org/10.1016/j.sab.2018.06.004

    Article  CAS  Google Scholar 

  19. FLUXANA, Proficiency testing results. https://fluxana.com/services/proficiency-testing. Accessed 10 June 2021

  20. ISO 29581–2:2010 (2010) Cement, test methods-part 2: chemical analysis by X-ray fluorescence. Geneva, Ed. 1. https://www.iso.org/standard/45567.html

  21. Vidmar T (2005) EFFTRAN—A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Meth A 550(3):603–608. https://doi.org/10.1016/j.nima.2005.05.055

    Article  CAS  Google Scholar 

  22. Dasari KB, Cho H, Jacimovic R, Sun GM, Yim YH (2020) Chemical composition of Asian dust in Daejeon, Korea, during the Spring Season. ACS Earth Space Chem 4(8):1227–1236. https://doi.org/10.1021/acsearthspacechem.9b00327

    Article  CAS  Google Scholar 

  23. Rousseau MR (2001) Detection limit and estimate of uncertainty of analytical XRF results. Regaku J 18(2):33–47

    CAS  Google Scholar 

  24. ASTM C150/C150M-09 (2009) Standard specification for Portland cement. ASTM International, Wet Conshohocken, Annual Book of ASTM Standards, vol 4.01. https://doi.org/10.1520/C0150_C0150M-09

  25. Saraçli S, Doğan N, Doğan İ (2013) Comparison of hierarchical cluster analysis methods by cophenetic correlation. J Inequal Appl 2013:203. https://doi.org/10.1186/1029-242X-2013-203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by KAERI through the Korea government project No. MSIT/1711078081, 2021. This work was also supported by KRISS under the project, “Establishment of Measurement Standards for Inorganic Analysis” Grant No. 21011058, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasari, K.B., Sun, GM. & Cho, H. Assessment of radiological hazards and chemical composition of cement produced in South Korea. J Radioanal Nucl Chem 330, 315–323 (2021). https://doi.org/10.1007/s10967-021-07936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07936-0

Keywords

Navigation