Skip to main content
Log in

Rapid stress relaxation and degradable aromatic disulfide vitrimer for recyclable carbon fiber reinforced composite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Carbon fiber thermoset composites pose significant challenges due to their inability to be reprocessed and the difficulties in recycling carbon fibers. Vitrimer materials with reversible dynamic covalent bonding offer a promising solution for the degradation of thermosetting resins and the recycling of carbon fibers. However, their practical application is limited by inability to quickly release stresses from deformation and long degradation times. To address these limitations, this study presents a novel vitrimer material based on free amine-catalyzed aromatic dynamic disulfide exchange. The dynamic disulfide exchange network, catalyzed by free amines, exhibits rapid stress relaxation, with a relaxation time of only 14 s at 180 °C. This exceptional dynamic exchange capability grants the vitrimer material outstanding self-healing properties, shape memory functionality, and recycling performance. Moreover, the higher concentration of disulfide bonds and the generation of small molecules increase the susceptibility of the crosslinked network to thiol degradation, resulting in resin degradation within 5 h. Additionally, this research successfully applies the vitrimer material as a matrix to prepare carbon fiber composites with exceptional mechanical properties. Furthermore, by degrading the resin matrix, effective recycling of carbon fibers is achieved, contributing to sustainable practices in the automotive and aerospace industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data for the study is available upon reasonable request from the corresponding author.

References

  1. Tamez MBA, Taha I (2021) A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration. Addit Manuf 37:101748

    CAS  Google Scholar 

  2. Wang Q, Ning H, Vaidya U, Pillay S, Nolen L-A (2015) Development of a carbonization-in-nitrogen method for measuring the fiber content of carbon fiber reinforced thermoset composites. Compos Part a-Appl S 73:80–84

    Article  CAS  Google Scholar 

  3. Ziaee M, Johnson JW, Yourdkhani M (2022) 3D Printing of Short-Carbon-Fiber-Reinforced Thermoset Polymer composites via Frontal polymerization. ACS Appl Mater Inter 14:16694–16702

    Article  CAS  Google Scholar 

  4. Feng P, Ma L, Wu G, Li X, Zhao M, Shi L, Wang M, Wang X, Song G (2020) Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double ‘rigid-flexible’ structure to improve interfacial and mechanical properties of carbon fiber/resin composites. Compos Sci Technol 10:200

    CAS  Google Scholar 

  5. Feng PF, Song GJ, Li XR, Xu H, Xu LY, Lv DD, Zhu X, Huang YD, Ma LC (2021) Effects of different rigid-flexible structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites. J Colloid Interf Sci 583:13–23

    Article  CAS  Google Scholar 

  6. Sarkari-Oskuei E, Safavi-Mirmahalleh S-A, Sofla RLM, Roghani-Mamaqani H, Salami-Kalajahi M (2023) Synthesis of recyclable polyurethane-based pseudo-vitrimer: comparison of properties with conventional polyurethane. J Polym Res 30:338

    Article  CAS  Google Scholar 

  7. Lagel MC, Pizzi A, Basso MC, Abdalla S (2015) Development and characterization of abrasive grinding wheels with a tannin-furanic resins matrix. Ind Crop Prod 65:343–348

    Article  CAS  Google Scholar 

  8. Sonnenfeld C, Mendil-Jakani H, Agogue R, Nunez P, Beauchene P (2017) Thermoplastic/thermoset multilayer composites: a way improve the impact damage tolerance of thermosetting resin matrix to composites. Compos Struct 171:298–305

    Article  Google Scholar 

  9. Adekunle K, Cho SW, Ketzscher R, Skrifvars M (2012) Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications. J Appl Polym Sci 124:4530–4541

    Article  CAS  Google Scholar 

  10. Barré S, Chotard T (1996) Benzeggagh, comparative study of strain rate effects on mechanical properties of glass fibre-reinforced thermoset matrix composite. Compos Part A-Appl S 27:1169–1181

    Article  Google Scholar 

  11. Lucherelli MA, Duval A, Averous L (2022) Biobased vitrimers: towards sustainable and adaptable performing polymer materials. Prog Polym Sci 127:101515

    Article  CAS  Google Scholar 

  12. Liu X, Zhang E, Feng Z, Liu J, Chen B, Liang L (2021) Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites. J Mater Sci 56:15733–15751

    Article  CAS  Google Scholar 

  13. Li M, Zhao G, Liu X, Xie X, Zhang C, Yu H, Jian X, Song Y, Xu J (2023) Self-healing interface of carbon fiber reinforced composites based on reversible hydrogen-bonded interactions. Compos Commun 40:101631

    Article  Google Scholar 

  14. Cheng C, Li J, Yang F, Li Y, Hu Z, Wang J (2018) Renewable eugenol-based functional polymers with self-healing and high temperature resistance properties. J Polym Res 25:57

    Article  Google Scholar 

  15. Zhang W, Zhou Q, Fang C, You L, Li X, Liu M, Dong X, Qi Y, Wang B, Li W (2022) Dynamic networks for polyimine with disulfide bond to obtain catalyst-free recyclability, multi-degradation and malleability. J Polym Res 29:154

    Article  CAS  Google Scholar 

  16. Krishnakumar B, Sanka RVSP, Binder WH, Parthasarthy V, Rana S, Karak N (2020) Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem Eng J 385:123820

    Article  CAS  Google Scholar 

  17. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like Malleable materials from Permanent Organic Networks. Science 334:965–968

    Article  CAS  PubMed  Google Scholar 

  18. Liu T, Zhao B, Zhang J (2020) Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer 194:122392

    Article  CAS  Google Scholar 

  19. Xu Y, Dai S, Bi L, Jiang J, Zhang H, Chen Y (2022) Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chem Eng J 429:132518

    Article  CAS  Google Scholar 

  20. Xu Y, Zhang H, Dai S, Xu S, Wang J, Bi L, Jiang J, Chen Y (2022) Hyperbranched polyester catalyzed self-healing bio-based vitrimer for closed-loop recyclable carbon fiber-reinforced polymers. Compos Sci Technol 228:109676

    Article  CAS  Google Scholar 

  21. Hendriks B, Waelkens J, Winne JM, Du FE, Prez (2017) Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium salts, ACS Macro. Lett 6:930–934

    CAS  Google Scholar 

  22. Huang J, Zhang L, Tang Z, Wu S, Guo B (2018) Reprocessable and robust crosslinked elastomers via interfacial C-N transalkylation of pyridinium. Compos Sci Technol 168:320–326

    Article  CAS  Google Scholar 

  23. Liu Y-Y, He J, Li Y-D, Zhao X-L, Zeng J-B (2020) Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind Crop Prod 153:112576

    Article  CAS  Google Scholar 

  24. Si H, Zhou L, Wu Y, Song L, Kang M, Zhao X, Chen M (2020) Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos Pt B-Eng 19:108278

    Article  Google Scholar 

  25. Chen M, Wu Y, Chen B, Tucker AM, Jagota A, Yang S (2022) Fast, strong, and reversible adhesives with dynamic covalent bonds for potential use in wound dressing. P Natl Acad Sci USA 119:e2203074119

    Article  CAS  Google Scholar 

  26. Shi YM, Hong YG, Hong JY, Yu AY, Lee MW, Lee JY, Goh M (2022) Bio-based boronic ester vitrimer for realizing sustainable and highly thermally conducting nanocomposites. Compos Pt B-Eng 244:110181

    Article  CAS  Google Scholar 

  27. Lu Y-X, Tournilhac F, Leibler L, Guan Z (2012) Making Insoluble Polymer Networks Malleable via Olefin Metathesis. J Am Chem Soc 134:8424–8427

    Article  CAS  PubMed  Google Scholar 

  28. Wang YQ, Cui XJ, Yang QQ, Deng TS, Wang YX, Yang YX, Jia SY, Qin ZF, Hou XL (2015) Chemical recycling of unsaturated polyester resin and its composites via selective cleavage of the ester bond. Green Chem 17:4527–4532

    Article  CAS  Google Scholar 

  29. Xu Y, Ma H, Zhang H, Xu S, Cheng X, Bi L, Jiang J, Chen Y (2023) A dual dynamic network self-healing bio-based vitrimer and its application in multiply recyclable carbon fiber reinforced polymers. Ind Crop Prod 198:116755

    Article  CAS  Google Scholar 

  30. Liu Y-Y, Liu G-L, Li Y-D, Weng Y, Zeng J-B (2021) Biobased High-Performance Epoxy Vitrimer with UV shielding for recyclable Carbon Fiber Reinforced composites, ACS sustainable. Chem Eng 9:4638–4647

    CAS  Google Scholar 

  31. An X, Ding Y, Xu Y, Zhu J, Wei C, Pan X (2022) Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. React Funct Polym 172:105189

    Article  CAS  Google Scholar 

  32. Zhou F, Guo Z, Wang W, Lei X, Zhang B, Zhang H, Zhang Q (2018) Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos Sci Technol 167:79–85

    Article  CAS  Google Scholar 

  33. Krishnakumar B, Sanka RVSP, Binder WH, Park C, Jung J, Parthasarthy V, Rana S, Yun GJ (2020) Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Compos Pt B-Eng 184:107647

    Article  CAS  Google Scholar 

  34. Tang S, Lin H, Dong K, Zhang J, Zhao C (2023) Closed-loop recycling and degradation of guaiacol-based epoxy resin and its carbon fiber reinforced composites with S-S exchangeable bonds. Polym Degrad Stabil 210:110298

    Article  CAS  Google Scholar 

  35. de Luzuriaga AR, Martin R, Markaide N, Rekondo A, Cabanero G, Rodriguez J, Odriozola I (2016) Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horiz 3:241–247

    Article  Google Scholar 

  36. Toldy A, Pomazi A, Szolnoki B (2020) The effect of manufacturing technologies on the flame retardancy of carbon fibre reinforced epoxy resin composites. Polym Degrad Stabil 174:109094

    Article  CAS  Google Scholar 

  37. Hammami A, Gebart BR (2010) Analysis of the vacuum infusion molding process. Polym Compos 21:28–40

    Article  Google Scholar 

  38. Matxain JM, Asua JM, Ruiperez F (2016) Design of new disulfide-based organic compounds for the improvement of self-healing materials. Phys Chem Chem Phys 18:1758–1770

    Article  CAS  PubMed  Google Scholar 

  39. de Rekondo AR, Solera G, Azcarate-Ascasua I, Boucher V, Grande HJ, Rekondo A (2022) Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer 239:124457

    Article  Google Scholar 

  40. Nevejans S, Ballard N, Miranda JI, Reck B, Asua JM (2016) The underlying mechanisms for self-healing of poly(disulfide)s. Phys Chem Chem Phys 18:27577–27583

    Article  CAS  PubMed  Google Scholar 

  41. Ji FC, Liu XD, Sheng DK, Yang YM (2020) Epoxy-vitrimer composites based on exchangeable aromatic disulfide bonds: reprocessibility, adhesive, multi-shape memory effect. Polymer 197:122514

    Article  CAS  Google Scholar 

  42. Zhou Q, Zhu XJ, Zhang WH, Song N, Ni LZ (2020) Recyclable high performance epoxy composites based on double dynamic Carbon-Nitrogen and Disulfide Bonds. ACS Appl Polym Mater 2:1865–1873

    Article  CAS  Google Scholar 

  43. Chen J-H, An X-P, Li Y-D, Wang M, Zeng J-B (2018) Reprocessible Epoxy Networks with Tunable Physical properties: synthesis, stress relaxation and recyclability. Chin J Polym Sci 36:641–648

    Article  CAS  Google Scholar 

  44. El-Zaatari BM, Ishibashi JSA, Kalow JA (2020) Cross-linker control of vitrimer flow. Polym Chem-UK 11:5339–5345

    Article  CAS  Google Scholar 

  45. Deng H, Ye J, Zu Z, Lin Z, Huang H, Zhang L, Ye X, Xiang H (2023) Repairable, reprocessable and recyclable rigid silicone material enabled by dual dynamic covalent bonds crosslinking side-chain. Chem Eng J 465:143038

    Article  CAS  Google Scholar 

  46. Rong J, Zhong J, Yan W, Liu M, Zhang Y, Qiao Y, Fu C, Gao F, Shen L, He H (2021) Study on waterborne self-healing polyurethane with dual dynamic units of quadruple hydrogen bonding and disulfide bonds. Polymer 221:123625

    Article  CAS  Google Scholar 

  47. Takahashi A, Ohishi T, Goseki R, Otsuka H (2016) Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage. Polymer 82:319–326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 52075526], the “Ningbo 3315 Plan Innovation Team” [grant number 2017A-28-C], the National Natural Science Foundation of China [grant number 91860204], the Fundamental Research Funds for the Central Universities [grant number DUT22-LAB605], the National Key Research and Development Program [grant number 2018YFB1107500], and the financial support from National Young Talents Program of China.

Funding

National Natural Science Foundation of China, 52075526, Jian Xu, 91860204, Xigao Jian, Ningbo 3315 Plan Innovation Team, 2017A-28-C, Jian Xu, Fundamental Research Funds for the Central Universities, DUT22-LAB605, Xigao Jian, National Key Research and Development Program, 2018YFB1107500, Jian Xu.

Author information

Authors and Affiliations

Authors

Contributions

Qinghua Zhang: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Visualization, Writing—Original draft preparation, Writing – Review & Editing. Mingzhuan Li: Visualization, Investigation. Peifeng Feng: Investigation, Methodology. Luoli Meng: Investigation, Methodology. Xigao Jian: Funding Acquisition, Supervision. Jian Xu (Corresponding Author): Conceptualization, Methodology, Funding Acquisition, Resources, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1890 KB)

Supplementary file2 (DOCX 866 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, M., Feng, P. et al. Rapid stress relaxation and degradable aromatic disulfide vitrimer for recyclable carbon fiber reinforced composite. J Polym Res 31, 87 (2024). https://doi.org/10.1007/s10965-024-03939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03939-z

Keywords

Navigation