Skip to main content

Advertisement

Log in

Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Attapulgite (ATT) is a multi-purpose nanomaterial, which can be used as a reinforcing filler for polylactic acid (PLA) and improve its barrier performance. However, due to the high content of ATT, it is easy to cause agglomeration. In this study, acetyl tributyl citrate (ATBC) was used to improve the toughness of PLA, and the plasticizer could reduce the polymer viscosity and improve the processability, which may contribute to the dispersion of ATT in PLA. The results show that a small amount of ATBC can improve the fracture elongation, crystallinity, water absorption, hydrolysis, and biodegradability of PLA. On the other hand, when ATT is added to PLA/ATBC sample by 10%, the tensile strength, and thermal degradation temperature can be greatly improved and reach the maximum value. Compared with pure PLA, the tensile strength is significantly increased by 33.4% (60.3 MPa), the elongation at break increased by 177.56%, and the thermal degradation temperature increased significantly by about 20.1 ℃. According to the scanning electron microscope and energy dispersive spectrometer, when ATT ≤ 10%, the nanofiller has excellent dispersion in the matrix, but when ATT > 10%, the nanofiller appears serious agglomeration and interfacial phase separation, which is caused by the incompatibility between PLA and ATT, so the performance of the nano composite is greatly reduced. From the results of soil burial and hydrolysis tests, the weight loss rate of PLA/ATBC samples increased with the increase of ATT nanofiller content. The influence of the internal and external tightness of the sample structure on the biodegradability was explained from the analysis results of water absorption and contact angle. The synergy of ATT and ATBC improves the comprehensive performance of PLA and increases its feasibility as a packaging material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Jašo V, Glenn G, Klamczynski A, Petrović ZS (2015) Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym Test 47:1–3. https://doi.org/10.1016/j.polymertesting.2015.07.011

    Article  CAS  Google Scholar 

  2. Zhou Y, Hu P, Jiang J (2017) Metabolite characterization of a novel sedative drug, remimazolam in human plasma and urine using ultra high-performance liquid chromatography coupled with synapt high-definition mass spectrometry. J Pharm Biomed Anal 137:78–83. https://doi.org/10.1016/j.jpba.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  3. Kakroodi AR, Kazemi Y, Nofar M (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782. https://doi.org/10.1016/j.cej.2016.09.130

    Article  CAS  Google Scholar 

  4. Yn Wang, Weng YX, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Test 36:119–125. https://doi.org/10.1016/j.polymertesting.2014.04.001

    Article  CAS  Google Scholar 

  5. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102. https://doi.org/10.1016/0142-9612(96)85754-1

    Article  CAS  PubMed  Google Scholar 

  6. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747. https://doi.org/10.1016/j.progpolymsci.2013.05.010

    Article  CAS  Google Scholar 

  7. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly (lactic acid) polymer: a review. Compos B Eng 164:287–296

    Article  CAS  Google Scholar 

  8. Granda L, Espinach F, Tarrés Q, Méndez J, Delgado, Aguilar M, Mutjé P (2016) Towards a good interphase between bleached kraft softwood fibers and poly (lactic) acid. Compos B Eng 99:514–520. https://doi.org/10.1016/j.compositesb.2016.05.008

    Article  CAS  Google Scholar 

  9. Scaffaro R, Lopresti F, Botta L (2018) PLA based biocomposites reinforced with Posidonia oceanica leaves. Compos B Eng 139:1–11. https://doi.org/10.1016/j.compositesb.2017.11.048

    Article  CAS  Google Scholar 

  10. Rasa RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  11. Daniel J, da Silva Derval S, Rosa (2022) Antimicrobial Performance of Bioinspired PLA Fabricated via One-Step Plasma Etching with Silver and Copper. ACS Appl Polym Mater 4(10):7162–7172. https://doi.org/10.1021/acsapm.2c01043

  12. Leal Filho W, Saari U, Fedoruk M, Iital A, Moora H, Klöga M (2019) An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. J Clean Prod 214:550–558. https://doi.org/10.1016/j.jclepro.2018.12.256

    Article  Google Scholar 

  13. Nassar SF, Guinault A, Delpouve N, Divry V, Ducruet V, Sollogoub C (2017) Multi-scale analysis of the impact of polylactide morphology on gas barrier properties. Polymer 108:163–172. https://doi.org/10.1016/j.polymer.2016.11.047

    Article  CAS  Google Scholar 

  14. Bai H, Huang C, Xiu H, Zhang Q, Fu Q (2014) Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934. https://doi.org/10.1016/j.polymer.2014.10.059

    Article  CAS  Google Scholar 

  15. Becker JM, Pounder RJ, Dove AP (2010) Synthesis of poly (lactide) s with modified thermal and mechanical properties. Macromol Rapid Commun 31:1923–1937. https://doi.org/10.1002/marc.201000088

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Zhao G, Wang G (2019) Investigation of the influence of pressurized CO 2 on the crystal growth of poly (l-lactic acid) by using an in situ high-pressure optical system. Soft Matter 15:5714–5727. https://doi.org/10.1039/C9SM00737G

    Article  CAS  PubMed  Google Scholar 

  17. Guinault A, Sollogoub C, Ducruet V, Domenek S (2012) Impact of crystallinity of poly (lactide) on helium and oxygen barrier properties. Eur Poly J 48:779–788. https://doi.org/10.1016/j.eurpolymj.2012.01.014

    Article  CAS  Google Scholar 

  18. Kumar S, Bhatnagar N, Ghosh AK (2016) Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly (lactide). Poly Bull 73:2087–2104. https://doi.org/10.1007/s00289-015-1595-x

    Article  CAS  Google Scholar 

  19. Gruber P, Drumright R, Henton D (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  Google Scholar 

  20. D’amico DA, Montes MI, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly (3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28. https://doi.org/10.1016/j.polymertesting.2015.11.004

    Article  CAS  Google Scholar 

  21. Signori F, Coltelli MB, Bronco S (2009) Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82. https://doi.org/10.1016/j.polymdegradstab.2008.10.004

    Article  CAS  Google Scholar 

  22. Graupner N, Poonsawat T, Narkpiban K, Jörg M (2023) Potential of Thai Bast Fibers for Injection Molded PLA Composites. J Renew Mater 11(5):2279–2300. https://doi.org/10.32604/jrm.2023.025529

  23. Chen P, Liang X, Xu Y, Zhou Y, Nie W (2018) Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization. Appl Surf Sci 440:1143–1149. https://doi.org/10.1016/j.apsusc.2018.01.260

    Article  CAS  Google Scholar 

  24. Sun N, Zhang Y, Ma L, Yu S, Li J (2017) Preparation and characterization of chitosan/purified attapulgite composite for sharp adsorption of humic acid from aqueous solution at low temperature. J Taiwan Inst Chem Eng 78:96–103. https://doi.org/10.1016/j.jtice.2017.03.017

    Article  CAS  Google Scholar 

  25. Kaynak C, Sarı B (2016) Accelerated weathering performance of polylactide and its montmorillonite nanocomposite. App Clay Sci 121:86–94. https://doi.org/10.1016/j.clay.2015.12.025

    Article  CAS  Google Scholar 

  26. Gazzotti S, Rampazzo R, Hakkarainen M, Bussini D, Ortenzi MA, Farina H et al (2019) Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: an in situ approach. Compos Sci Technol 171:94–102. https://doi.org/10.1016/j.compscitech.2018.12.015

    Article  CAS  Google Scholar 

  27. Wang Y, Mei Y, Wang Q, Wei W, Huang F, Li Y (2019) Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Compos B Eng 162:54–61. https://doi.org/10.1016/j.compositesb.2018.10.060

    Article  CAS  Google Scholar 

  28. Scaffaro R, Botta L, Maio A, Gallo G (2017) PLA graphene nanoplatelets nanocomposites: physical properties and release kinetics of an antimicrobial agent. Compos B Eng 109:138–146. https://doi.org/10.1016/j.compositesb.2016.10.058

    Article  CAS  Google Scholar 

  29. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53:58–65. https://doi.org/10.1016/j.clay.2011.04.023

    Article  CAS  Google Scholar 

  30. Nerantzaki M, Prokopiou L, Bikiaris DN, Patsiaoura D, Chrissafis K, Klonos P (2018) In situ prepared poly (DL-lactic acid)/silica nanocomposites: study of molecular composition, thermal stability, glass transition and molecular dynamics. Thermo Acta 669:16–29. https://doi.org/10.1016/j.tca.2018.08.025

    Article  CAS  Google Scholar 

  31. Tsou CH, Yao WH, Lu YC, Tsou CY, Wu CS, Chen J, Wang RY, Su C, Hung WS, De GM, Suen MC (2017) Antibacterial property and cytotoxicity of a poly (lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers 9:100. https://doi.org/10.3390/polym9030100Cundefinedaundefinedoundefined

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zheng L, Geng Z, Zhen W (2019) Preparation, characterization, and reaction kinetics of poly (lactic acid)/amidated graphene oxide nanocomposites based on reactive extrusion process. J Polym Res 26:1–13. https://doi.org/10.1007/s10965-019-1722-8

    Article  CAS  Google Scholar 

  33. Kumar SR (2022) Effect of wood flour and nano-SiO2 on stimulus response, mechanical, and thermal behavior of 3D printed polylactic acid composites. Polym Adv Tech 33:4197–4205. https://doi.org/10.1002/pat.5851

    Article  CAS  Google Scholar 

  34. Bajwa DS, Shojaeiarani J, Liaw JD, Bajwa SG (2021) Role of hybrid nano-zinc oxide and cellulose nanocrystals on the mechanical, thermal, and flammability properties of poly (lactic acid) polymer. J Compos Sci 543. https://doi.org/10.3390/jcs5020043

  35. Ng HM, Bee ST, Sin LT (2020) Interaction effect of scomberomorus guttatus-derived hydroxyapatite and montmorillonite on the characteristics of polylactic acid blends for biomedical application. J Polym Res 27:215. https://doi.org/10.1007/s10965-020-02138-w

    Article  CAS  Google Scholar 

  36. Liu X, Wu Q (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 42:10013–10019. https://doi.org/10.1016/S0032-3861(01)00561-4

    Article  CAS  Google Scholar 

  37. Ju Y, Wang T, Huang Y, Zhou L, Yang Y, Liao F (2016) The flame-retardance polylactide nanocomposites with nano attapulgite coated by resorcinol bis (diphenyl phosphate). J Vinyl Addit Technol 22:506–513. https://doi.org/10.1002/vnl.21469

    Article  CAS  Google Scholar 

  38. Zhou Y, Lei L, Yang B, Li J, Ren J (2017) Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polym Test 60:78–83. https://doi.org/10.1016/j.polymertesting.2017.03.007

    Article  CAS  Google Scholar 

  39. Tsou CH, Guo J, Lei JA, De Guzman MR, Suen MC (2020) Characterizing attapulgite-reinforced nanocomposites of poly (lactic acid). Polym Sci Ser A 62:732–743. https://doi.org/10.1134/S0965545X20330068

    Article  Google Scholar 

  40. Pla O, Guinea F, Louis E, Ghaisas S, Sander L (1998) Viscous effects in brittle fracture. Phys Rev B 57:R13981. https://doi.org/10.1103/PhysRevB.57.R13981

    Article  CAS  Google Scholar 

  41. Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340. https://doi.org/10.1007/s10965-011-9646-y

    Article  CAS  Google Scholar 

  42. Su SK, Gu JH, Lee HT, Wu CL, Tsou CH, Suen MC (2016) Preparation and characterization of biodegradable polyurethanes composites containing thermally treated attapulgite nanorods. Polym Bull 73:3119–3141. https://doi.org/10.1007/s00289-016-1645-z

    Article  CAS  Google Scholar 

  43. Zhang N, Yu X, Duan J, Yang JH, Huang T, Qi XD (2018) Comparison study of hydrolytic degradation behaviors between α′-and α-poly (l-lactide). Polym Degrad Stab 148:1–9. https://doi.org/10.1016/j.polymdegradstab.2017.12.014

    Article  CAS  Google Scholar 

  44. Galli P, Danesi S, Simonazzi T (1984) Polypropylene based polymer blends: fields of application and new trends. Polym Eng Sci 24:544–554. https://doi.org/10.1002/pen.760240807

    Article  CAS  Google Scholar 

  45. Yeh JT, Tsou CH, Li YM et al. (2012) The compatible and mechanical properties of biodegradable poly(Lactic Acid)/ethylene glycidyl methacrylate copolymer blends. J Polym Res 19(2) 9766. https://doi.org/10.1007/s10965-011-9766-4

  46. Tsou CH, Suen MC, Yao WH, Yeh JT, Wu CS, Tsou CY (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 7:5617–5632. https://doi.org/10.3390/ma7085617

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen ZJ, Tsou CH, Tsai ML, Guo J, De, Guzman MR, Yang T (2021) Barrier properties and hydrophobicity of biodegradable poly (lactic acid) composites reinforced with recycled chinese spirits distiller’s grains. Polymers 13:2861. https://doi.org/10.3390/polym13172861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo J, Tsou CH, De Guzman MR, Wu CS, Zhang X, Chen Z (2021) Preparation and characterization of bio-based green renewable composites from poly (lactic acid) reinforced with corn stover. J Polym Res 28:1–15. https://doi.org/10.1007/s10965-021-02710-y

    Article  CAS  Google Scholar 

  49. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27:R713–R5. https://doi.org/10.1016/j.cub.2017.05.064

    Article  CAS  Google Scholar 

  50. Wen YH, Tsou CH, De, Guzman MR, Wu WS, Liao B, Du J (2021) Preparation of antibacterial nanocomposites of zinc oxide-doped graphene reinforced polypropylene with high comprehensive properties. NANO 16:2150026. https://doi.org/10.1142/S1793292021500260

    Article  CAS  Google Scholar 

  51. Ge FF, Tsou CH, Yuan S, De, Guzman MR, Zeng CY, Li J (2021) Barrier performance and biodegradability of antibacterial poly (butylene adipate-co-terephthalate) nanocomposites reinforced with a new MWCNT-ZnO nanomaterial. Nanotech 32:485706. https://doi.org/10.1088/1361-6528/ac1b52

    Article  CAS  Google Scholar 

  52. Tsou CH, Zhao L, Gao C, Duan H, Lin X, Wen Y (2020) Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance. Nanotechnology 31:385703. https://doi.org/10.1088/1361-6528/ab9786

    Article  CAS  PubMed  Google Scholar 

  53. Gálvez J, Correa Aguirre JP, Hidalgo Salazar MA, Vera Mondragón B, Wagner E, Caicedo C (2020) Effect of extrusion screw speed and plasticizer proportions on the rheological, thermal, mechanical, morphological and superficial properties of PLA. Polymers 12:2111. https://doi.org/10.3390/polym12092111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maiza M, Benaniba MT, Quintard G, Massardier, Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590. https://doi.org/10.1590/0104-1428.1986

    Article  CAS  Google Scholar 

  55. Celebi H, Gunes E (2018) Combined effect of a plasticizer and carvacrol and thymol on the mechanical, thermal, morphological properties of poly (lactic acid). J Appl Polym Sci 135:45895. https://doi.org/10.1002/app.45895

    Article  CAS  Google Scholar 

  56. Tsou CH, Ma ZL, De Guzman MR, Zhao L, Du J, Emori W (2022) High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol. Prog Org Coat 166:106805. https://doi.org/10.1016/j.porgcoat.2022.106805

    Article  CAS  Google Scholar 

  57. Tsou CH, Wu CS, Hung WS, De, Guzman MR, Gao C, Wang RY (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271. https://doi.org/10.1016/j.polymer.2018.11.048

    Article  CAS  Google Scholar 

  58. Tsou CH, Gao C, Guzman MD, Wu DY, Hung WS, Yuan L, Suen MC, Yeh JT (2018) Preparation and characterization of poly (lactic acid) with adipate ester added as a plasticizer. Poly Com 26:446–453. https://doi.org/10.1177/0967391118809210

    Article  CAS  Google Scholar 

  59. Stoehr N et al (2014) Properties and weldability of plasticized polylactic acid films. J Appl Polym Sci 131:12

    Google Scholar 

  60. Wu CS, Tsou CH (2019) Fabrication, characterization, and application of biocomposites from poly (lactic acid) with renewable rice husk as reinforcement. J Polym Res 26:1–9. https://doi.org/10.1007/s10965-019-1710-z

    Article  CAS  Google Scholar 

  61. Tsou CH, Zeng R et al. (2023) Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties. Chin J Chem Eng. In Press  https://doi.org/10.1016/j.cjche.2022.08.022

  62. Guo J, Tsou CH et al (2021) Conductivity and mechanical properties of carbon black-reinforced poly(lactic acid) (PLA/CB) composites. Iran Polym J 30(12)1251–1262. https://doi.org/10.1007/s13726-021-00973-2

  63. Promsorn J, Harnkarnsujarit N (2022) Pyrogallol loaded thermoplastic cassava starch based films as bio-based oxygen scavengers. Ind Crops Prod 186:115226. https://doi.org/10.1016/j.indcrop.2022.115226

  64. Ge FF, Wan N, Tsou CH (2022) Thermal properties and hydrophilicity of antibacterial poly(phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes. J Polym Res 29:83. https://doi.org/10.1007/s10965-022-02931-9

    Article  CAS  Google Scholar 

  65. Tsou CH, Zeng R, Tsou CY, Mechanical (2022) Hydrophobic, and barrier properties of nanocomposites of modified polypropylene reinforced with low-content attapulgite. Polymers 14:3696. https://doi.org/10.3390/polym14173696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsou CH, Yao WH, Wu CS, Tsou CY, Hung WS, Chen JC (2019) Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications. J Polym Res 26:1–10. https://doi.org/10.1007/s10965-019-1882-6

    Article  CAS  Google Scholar 

  67. Ma ZL, Tsou CH, Cui X, Wu J, Lin L, Wen H (2022) Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite. Cu Res Gr Sus Chem 5:100314. https://doi.org/10.1016/j.crgsc.2022.100314

    Article  CAS  Google Scholar 

  68. Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N (2021) Biodegradable poly (Butylene Adipate-Co-Terephthalate) and thermoplastic starch-blended TiO2 nanocomposite blown films as functional active packaging of fresh fruit. Polymers 13:4192. https://doi.org/10.3390/polym13234192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karst D, Yang Y (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47:4845–4850. https://doi.org/10.1016/j.polymer.2006.05.002

    Article  CAS  Google Scholar 

  70. Siparsky GL, Voorhees KJ, Miao F (1998) Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Polym Environ 6:31–41. https://doi.org/10.1023/A:1022826528673

    Article  CAS  Google Scholar 

  71. Karst D, Yang Y (2006) Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 47(13):4845–4850

    Article  CAS  Google Scholar 

  72. Wongphan P, Khowthong M, Supatrawiporn T (2022) Novel edible starch films incorporating papain for meat tenderization. Food 31:100787. https://doi.org/10.1016/j.fpsl.2021.100787

    Article  CAS  Google Scholar 

  73. Katekhong W, Wongphan P, Klinmalai P (2022) Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chem 374:131709. https://doi.org/10.1016/j.foodchem.2021.131709

    Article  CAS  PubMed  Google Scholar 

  74. Tsou CH, Ge FF et al (2023) Barrier and Biodegradable Properties of Poly(butylene adipate-co-terephthalate) Reinforced with ZnO-Decorated Graphene Rendering it Antibacterial. ACS Appl Polym Mater. In press  https://doi.org/10.1021/acsapm.2c01507

  75. Wongphan P, Panrong T, Harnkarnsujarit N (2022) Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Pack Shelf Life 32:100844. https://doi.org/10.1016/j.fpsl.2022.100844

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the following organizations: Supported by Sichuan Province Science and Technology (2022JDTD0016); Chengdu Science and Technology (2021-RC02-00005-CG); Zigong City Science and Technology (2019CXRC01); Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (2019CL05; 2020CL19).

Funding

This research was funded by Sichuan Province Science and Technology Support Program (2022JDTD001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Hui Tsou or Yiqing Xia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YL., Tu, LJ., Tsou, CH. et al. Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. J Polym Res 30, 117 (2023). https://doi.org/10.1007/s10965-023-03483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03483-2

Keywords

Navigation