Skip to main content

Advertisement

Log in

Development and characterization of PCL membranes incorporated with Zn-doped bioactive glass produced by electrospinning for osteogenesis evaluation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The integration of biomaterials in tissue regeneration has been showing effectiveness in the treatment of diseases related to bone structure and tissue repair. Membranes have aroused interest due to their ease of manufacture, variation in composition, and the structure of the biomaterial. The incorporation of bioactive glass (BG) increases bioactivity, and when doped with therapeutic ions, changes in the physical-chemical composition of the biomaterial are expected to enhance its biological effect. This study aimed to produce polycaprolactone (PCL) membranes incorporated with 58S bioactive glass, doped with Zinc (Zn) by the electrospinning technique, and evaluate the influence of this biomaterial in the activity and differentiation of mesenchymal stem cells. The BG was produced by using the sol-gel process; next, before the PCL preparation, the BG was doped with zinc in a solution. Then, PCL solutions were prepared with 7% by weight of BG and doped with 10% ZnCl2. Afterward, the electrospinning process was carried out using the fixed parameters: 2mLh-1 flow rate, 10kV voltage, and 12cm distance. Before the biological assays, the chemical elements present in the fibers were evaluated by energy dispersion X-ray spectroscopy (EDS), and the mapping technique. The morphology of the biomaterial and the diameter of fibers were analyzed by scanning electron microscopy (SEM), and the hydrophilicity of the membranes was evaluated by the contact angle technique. The in vitro tests consisted of cell plating with mesenchymal stem cells (MSC’s), previously obtained from rat femurs, at a density of 1x104 per well that contained three different groups: a) P: mesenchymal stem cells plated with PCL; b) PB: mesenchymal stem cells plated with the composite of PCL / BG; c) PBZ: mesenchymal stem cells plated with the Zn doped PCL / BG composite. To evaluate the influence of the biomaterial on osteoblastic activity and differentiation, osteogenic and non-osteogenic media were used in tests of cell viability (MTT assay), total protein content, alkaline phosphatase activity (ALP), and mineralization nodules. The analysis by SEM proved that the electrospinning technique was efficient for producing fibers incorporated with bioactive glass, and EDS and the mapping technique confirmed the chemical components of each group of fibers, including the doped zinc in the bioactive glass. The analysis of fibers diameter showed that P and PBZ had presented fibers with a larger diameter than the PB group, and the contact angle technique showed an increase in the hydrophilicity of the group containing doped Zinc when compared to the other groups analyzed. The MTT assay confirmed that the membranes weren´t cytotoxic and allowed cell viability, total protein content showed that all the groups had cell activity, with a statistically significant difference between the groups (p<0,05). Even with no statistically significant difference, osteogenesis was proved by ALP activity and the formation of mineralization nodules. Based on the results, the PCL membranes incorporated with 58S bioactive glass doped with zinc have shown promise in tissue engineering for use in bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Moura NK, Martins EF, Oliveira RLMS, de Brito Siqueira IAW, Machado JPB, Esposito E, de Sousa Trichês E (2020) Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration. Mater Sci Eng: C. https://doi.org/10.1016/j.msec.2020.111327

    Article  Google Scholar 

  2. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Mater 2(4):224–247. https://doi.org/10.1016/j.bioactmat.2017.05.0

    Article  Google Scholar 

  3. Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H (2020) Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 9(9):2073. https://doi.org/10.3390/cells9092073

    Article  CAS  PubMed Central  Google Scholar 

  4. Abdulghani S, Mitchell GR (2019) Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 9(11):750. https://doi.org/10.3390/biom9110750

    Article  CAS  PubMed Central  Google Scholar 

  5. Baroli B (2009) From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 98(4):1317–1375. https://doi.org/10.1002/jps.21528

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Ashames A, Ali Buabeid M, Mustafa Fahelelbom K, Ijaz M, Murtaza G (2020) Nanocomposites drug delivery systems for the healing of bone fractures. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119477

    Article  PubMed  Google Scholar 

  7. Doostmohammadi M, Forootanfar H, Ramakrishna S (2019) Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Mater Sci Eng: C. https://doi.org/10.1016/j.msec.2019.110521

    Article  Google Scholar 

  8. Elgali I, Omar O, Dahlin C, Thomsen P (2017) Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 125(5):315–337. https://doi.org/10.1111/eos.12364

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H (2018) Current Advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater. https://doi.org/10.1002/adhm.201801106

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O (2018) Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 269:88–99. https://doi.org/10.1016/j.jconrel.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  11. Zeng Y, Hoque J, Varghese S (2019) Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomaterialia 93:152–168. https://doi.org/10.1016/j.actbio.2019.01.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao X (2011) Bioactive materials in orthopaedics. Bioactive Mater Med. https://doi.org/10.1533/9780857092939.2.124

    Article  Google Scholar 

  13. Grandi G, Heitz C, dos Santos LA, Silva ML, Sant’Ana Filho M, Pagnocelli RM, Silva DN (2011) Comparative histomorphometric analysis between α-Tcp cement and β-Tcp/Ha granules in the bone repair of rat calvaria. Mater Res 14(1):11–16. https://doi.org/10.1590/s1516-14392011005000020

    Article  CAS  Google Scholar 

  14. da Fonseca GF, Avelino SD, Mello DD, do Prado RF, Campos TM, de Vasconcellos LM, de Sousa Trichês E, Borges AL (2020) Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance. J Mater Sci: Mater  Med 31(5). https://doi.org/10.1007/s10856-020-06382-w

  15. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Khademhosseini A (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166. https://doi.org/10.1016/j.addr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajzer I, Dziadek M, Kurowska A, Cholewa-Kowalska K, Ziąbka M, Menaszek E, Douglas TE (2019) Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. J Mater Sci: Mater Med 30(7). https://doi.org/10.1007/s10856-019-6280-4

  17. Miszuk JM, Xu T, Yao Q, Fang F, Childs JD, Hong Z, Sun H (2018) Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation. Appl Mater Today 10:194–202. https://doi.org/10.1016/j.apmt.2017.12.004

    Article  PubMed  Google Scholar 

  18. Park YJ, Cha JH, Bang SI, Kim SY (2018) Clinical Application of Three-Dimensionally Printed Biomaterial Polycaprolactone (PCL) in Augmentation Rhinoplasty. Aesthet Plast Surg. https://doi.org/10.1007/s00266-018-1280-1

    Article  Google Scholar 

  19. Granel H, Bossard C, Collignon A-M, Wauquier F, Lesieur J, Rochefort GY, Wittrant Y (2019) Bioactive Glass / Polycaprolactone Hybrid with Dual Cortical / Trabecular Structure for Bone Regeneration. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.9b00407

    Article  PubMed  Google Scholar 

  20. Anindyajati A, Boughton P, Ruys A (2017) Fabrication and Microstructure Evaluation of Fibrous Composite for Acetabular Labrum Implant. Mater Sci Forum 900:17–22. https://doi.org/10.4028/www.scientific.net/msf.900.17

    Article  Google Scholar 

  21. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002

    Article  CAS  Google Scholar 

  22. Iaquinta M, Mazzoni E, Manfrini M, D’Agostino A, Trevisiol L, Nocini R, Tognon M (2019) Innovative Biomaterials for Bone Regrowth. Int J Mol Sci 20(3):618. https://doi.org/10.3390/ijms20030618

    Article  CAS  PubMed Central  Google Scholar 

  23. Santana-Melo GF, Rodrigues BVM, da Silva E, Ricci R, Marciano FR, Webster TJ, Lobo AO (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B Biointerfaces 155:544–552. https://doi.org/10.1016/j.colsurfb.2017.04.053

    Article  CAS  PubMed  Google Scholar 

  24. Sato T, Mello D, Vasconcellos L, Valente A, Borges A (2020) Chitosan-Based Coacervate Polymers for Propolis Encapsulation: Release and Cytotoxicity Studies. Int J Mol Sci 21(12):4561. https://doi.org/10.3390/ijms21124561

    Article  PubMed Central  Google Scholar 

  25. Hench LL (2006) The story of Bioglass®. J Mater Sci: Mater Med 17(11):967–978. https://doi.org/10.1007/s10856-006-0432-z

    Article  CAS  Google Scholar 

  26. Bellucci D, Chiellini F, Ciardelli G, Gazzarri M, Gentile P, Sola A, Cannillo V (2012) Processing and characterization of innovative scaffolds for bone tissue engineering. J Mater Sci: Mater Med 23(6):1397–1409. https://doi.org/10.1007/s10856-012-4622-6

    Article  CAS  Google Scholar 

  27. Sista S, Nouri A, Li Y, Wen C, Hodgson PD, Pande G (2013) Cell biological responses of osteoblasts on anodized nanotubular surface of a titanium-zirconium alloy. J Biomed Mater Res Part A 101(12):3416–3430. https://doi.org/10.1002/jbm.a.34638

    Article  CAS  Google Scholar 

  28. Rizwan M, Hamdi M, Basirun WJ (2017) Bioglass® 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res Part A 105(11):3197–3223. https://doi.org/10.1002/jbm.a.36156

    Article  CAS  Google Scholar 

  29. Shi C, Wu T, He Y, Zhang Y, Fu D (2020) Recent advances in bone-targeted therapy. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2020.107473

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mourino V, Cattalini JP, Boccaccini AR (2011) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9(68):401–419. https://doi.org/10.1098/rsif.2011.0611

  31. Münchow EA, Albuquerque MTP, Zero B, Kamocki K, Piva E, Gregory RL, Bottino MC (2015) Development and characterization of novel ZnO-loaded electrospun membranes for periodontal regeneration. Dental Mater 31(9):1038–1051. https://doi.org/10.1016/j.dental.2015.06.004

  32. Vukajlovic D, Parker J, Bretcanu O, Novakovic K (2018) Chitosan based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng: C. https://doi.org/10.1016/j.msec.2018.12.026

    Article  Google Scholar 

  33. Neščáková Z, Kaňková H, Galusková D, Galusek D, Boccaccini AR, Liverani L (2021) Polymer (PCL) fibers with Zn-doped mesoporous bioactive glass nanoparticles for tissue regeneration. Int J Appl Glass Sci 12(4):588–600. https://doi.org/10.1111/ijag.16292

    Article  CAS  Google Scholar 

  34. Yu W, Sun T-W, Qi C, Ding Z, Zhao H, Zhao S, He Y (2017) Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation. Int J Nanomed 12:2293–2306. https://doi.org/10.2147/ijn.s126505

    Article  CAS  Google Scholar 

  35. Dias AM, da Silva FG, de Figueiredo Monteiro AP, Pinzón-García AD, Sinisterra RD, Cortés ME (2019) Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease. Mater Sci Eng: C 103

  36. Su Y, Cockerill I, Wang Y, Qin Y-X, Chang L, Zheng Y, Zhu D (2018) Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zanni E, Bruni E, Chandraiahgari CR, De Bellis G, Santangelo MG, Leone M, Bregnocchi A, Mancini P, Sarto MS, Uccelletti D (2017) Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches. J Nanobiotechnol 15(1). https://doi.org/10.1186/s12951-017-0291-4

  38. Ingavle GC, Leach JK (2014) Advancements in Electrospinning of Polymeric Nanofibrous Scaffolds for Tissue Engineering. Tissue Eng Part B: Rev 20(4):277–293. https://doi.org/10.1089/ten.teb.2013.0276

    Article  CAS  Google Scholar 

  39. Mei L, Wang Y, Tong A, Guo G (2016) Facile electrospinning of an efficient drug delivery system. Expert Op Drug Deliv 13(5):741–753. https://doi.org/10.1517/17425247.2016.1142525

    Article  CAS  Google Scholar 

  40. Zelkó R, Lamprou DA, Sebe I (2019) Recent Development of Electrospinning for Drug Delivery. Pharmaceutics 12(1):5. https://doi.org/10.3390/pharmaceutics12010005

    Article  PubMed Central  Google Scholar 

  41. Zhu S, Liu Y, Gu Z, Zhao Y (2021) A Bibliometric Analysis of Advanced Healthcare Materials : Research Trends of Biomaterials in Healthcare Application. Adv Healthc Mater 10(10):2002222. https://doi.org/10.1002/adhm.202002222

    Article  CAS  Google Scholar 

  42. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Shu W (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Mater 3(3):278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  43. Wang L, Wang C, Wu S, Fan Y, Li X (2020) Influence of mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci. https://doi.org/10.1039/d0bm00269k

    Article  PubMed  PubMed Central  Google Scholar 

  44. Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Nöth U, Hutmacher DW (2013) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 65(4):581–603. https://doi.org/10.1016/j.addr.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  45. Boudriot U, Dersch R, Greiner A, Wendorff JH (2006) Electrospinning Approaches Toward Scaffold Engineering: A Brief Overview. Artificial Organs, 30(10), 785–792. https://doi.org/10.1111/j.1525-1594.2006.00301.x

  46. De Souza JR, Sato TP, Borges ALS (2017). Scaffold architecture for dental biomaterials: influence of process parameters on the structural morphology of chitosan electrospun fibers. Brazilian Dental Science 20(4). https://doi.org/10.14295/bds.2017.v20i4.1495

  47. Calori IR, Braga G, Carvalho de Jesus P da C, Bi H, Tedesco, AC (2020) Polymer Scaffolds as Drug Delivery Systems. European Polymer Journal 109621. https://doi.org/10.1016/j.eurpolymj.2020.109621

  48. Allafchian A, Jalali SAH, Mousavi SE, Hosseini SS (2019) Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.11.09

    Article  PubMed  Google Scholar 

  49. Benhacine F, Abdellaoui N, Arous O, Hadj-Hamou A (2018) Behaviours Of Poly (Ε-Caprolactone) /Silver- Montmorillonite Nanocomposite In Membrane Ultrafiltration For Wastewater Treatment. Environ Technol. https://doi.org/10.1080/09593330.2018.1555283

    Article  PubMed  Google Scholar 

  50. Kukulka EC, Sato TP, Archangelo KC, Santos JD, De Souza JR, Borges ALS (2021) Development of electrospun-based polyetherimide fibers and diameter analysis for potential use in dental materials. Brazilian Dent Sci 24(2):1–5. https://doi.org/10.14295/bds.2021.v24i2.2107

    Article  Google Scholar 

  51. Milleret V, Hefti T, Hall H, Vogel V, Eberli D (2012) Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia 8(12):4349–4356. https://doi.org/10.1016/j.actbio.2012.07.032

    Article  CAS  PubMed  Google Scholar 

  52. Suarez-franco JL, Vázquez-Vázquez FC, Pozos-Guillen A, Montesinos JJ, Alvarez-Fregoso O, Alvarez-Perez MA (2018) Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells. Dental Mater J 37(3):465–473. https://doi.org/10.4012/dmj.2016-329

    Article  Google Scholar 

  53. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. European J Pharm Sci 66:29–35. https://doi.org/10.1016/j.ejps.2014.09.022

    Article  CAS  Google Scholar 

  54. Spirandeli BR, Campos TMB, Ribas RG, Thim GP, Trichês ES (2020) Evaluation of colloidal and polymeric routes in sol-gel synthesis of a bioactive glass-ceramic derived from 45S5 bioglass. Ceramics Int. https://doi.org/10.1016/j.ceramint.2020.05.108

    Article  Google Scholar 

  55. Pereira R do V (2013) Development of biodegradable 58s pldla/bioglass scaffolds produced by selective laser sintering. Dissertation (Master's in Materials Science and Engineering) - Federal University of Santa Catarina. Florianopolis 94

  56. Zhang P, Yang K, Zhou Z, Zhu X, Li W, Cao C, Ai F (2020) Customized Borosilicate Bioglass Scaffolds With Excellent Biodegradation and Osteogenesis for Mandible Reconstruction. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.610284

    Article  PubMed  PubMed Central  Google Scholar 

  57. Joughehdoust S, Manafi S (2012) Synthesis and in vitro investigation of sol-gel derived bioglass-58S nanopowders. Materials Science-Poland, 30(1), 45–52. https://doi.org/10.2478/s13536-012-0007-2

  58. Ruan C, Hu N, Ma Y, Li Y, Liu J, Zhang X, Pan H (2017) The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Scientific Rep 7(1). https://doi.org/10.1038/s41598-017-06354-1

  59. Obata A, Iwanaga N, Terada A, Jell G, Kasuga T (2017) Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite. J Mater Sci 52(15):8942–8956. https://doi.org/10.1007/s10853-017-1057-y

    Article  CAS  Google Scholar 

  60. Liu W, Thomopoulos S, Xia Y (2011) Electrospun Nanofibers for Regenerative Medicine. Adv Healthc Mater 1(1):10–25. https://doi.org/10.1002/adhm.201100021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mourino V, Boccaccini AR (2009) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Royal Soc Interf 7(43):209–227. https://doi.org/10.1098/rsif.2009.0379

    Article  CAS  Google Scholar 

  62. Lowry O, Rosebrough N, Farr AL, Randall R (1951) Protein Measurement With The Folin Phenol Reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  63. Kim D-A, Lee J-H, Jun S-K, Kim H-W, Eltohamy M, Lee H-H (2017) Sol–gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties. Dental Mater 33(7):805–817. https://doi.org/10.1016/j.dental.2017.04.017

    Article  CAS  Google Scholar 

  64. Cai Q, Bei J, Wang S (2000) Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and ε-caprolactone. J Biomater Sci Polym Ed 11(3):273–288. https://doi.org/10.1163/156856200743698

    Article  CAS  PubMed  Google Scholar 

  65. Gómez-Cerezo N, Casarrubios L, Saiz-Pardo M, Ortega L, de Pablo D, Díaz-Güemes I, Vallet-Regí M (2019) Mesoporous bioactive glass/ɛ-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2019.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jinga S-I, Costea C-C, Zamfirescu A-I, Banciu A, Banciu D-D, Busuioc C (2020) Composite Fiber Networks Based on Polycaprolactone and Bioactive Glass-Ceramics for Tissue Engineering Applications. Polymers 12(8):1806. https://doi.org/10.3390/polym12081806

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the São Paulo Research Foundation - FAPESP, for the scholarship process no. 2019/25744-9., 2020/12874-9 and 2020/12507-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Santos Fernandes.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, M.S., Kukulka, E.C., de Souza, J.R. et al. Development and characterization of PCL membranes incorporated with Zn-doped bioactive glass produced by electrospinning for osteogenesis evaluation. J Polym Res 29, 370 (2022). https://doi.org/10.1007/s10965-022-03208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03208-x

Keywords

Navigation