Skip to main content

Advertisement

Log in

Sodium Acetate and Sodium Butyrate Differentially Upregulate Antimicrobial Component Production in Mammary Glands of Lactating Goats

  • Original Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Short-chain fatty acids activate antimicrobial component production in the intestine. However, their effects on mammary glands remain unclear. We investigated the effects of acetate and butyrate on antimicrobial component production in mammary epithelial cells (MECs) or leukocytes cultured in vitro and in mammary glands of lactating Tokara goats in vivo. Our results showed that butyrate enhanced the production of β-defensin-1 and S100A7 in MECs. Additionally, the infusion of butyrate into mammary glands through the teats enhanced β-defensin-1 and S100A7 concentrations in milk. The infusion of acetate also increased β-defensin-1 and S100A7 concentrations along with those of cathelicidin-2 and interleukin-8, which are produced by leukocytes. Furthermore, acetate promoted cathelicidin-2 and interleukin-8 secretion in leukocytes in vitro. These findings suggest that acetate and butyrate differentially upregulate antimicrobial component production in mammary glands, which could help to develop appropriate treatment for mastitis, thereby reducing economic losses and improving animal welfare in farming environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.

    Article  CAS  PubMed  Google Scholar 

  2. Schwab M, Reynders V, Loitsch S, Steinhilber D, et al. The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology. 2008;125:241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Y, Chen F, Wu W, Sun M, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11:752–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Isobe N. Control mechanisms for producing antimicrobial factors in ruminant mammary gland. Anim Sci J. 2017;88:937–43.

    Article  PubMed  Google Scholar 

  5. Zarzosa-Moreno D, Avalos-Gomez C, Ramirez-Texcalco LS, Torres-Lopez E, et al., Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020, 25.

  6. Tang YQ, Yuan J, Osapay G, Osapay K, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999;286:498–502.

    Article  CAS  PubMed  Google Scholar 

  7. Chanu KV, Thakuria D, Kumar S. Antimicrobial peptides of buffalo and their role in host defenses. Vet World. 2018;11:192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wheeler TT, Smolenski GA, Harris DP, Gupta SK, et al. Host-defence-related proteins in cows’ milk. Animal. 2012;6:415–22.

    Article  CAS  PubMed  Google Scholar 

  9. Tomasinsig L, De Conti G, Skerlavaj B, Piccinini R, et al. Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect Immun. 2010;78:1781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20.

    Article  CAS  PubMed  Google Scholar 

  11. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68:2161–76.

    Article  CAS  PubMed  Google Scholar 

  12. Schafer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21:134–40.

    Article  CAS  PubMed  Google Scholar 

  13. Gunther J, Petzl W, Zerbe H, Schuberth HJ, et al. Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows. BMC Genomics. 2012;13:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang GW, Lai SJ, Yoshimura Y, Isobe N. Expression of cathelicidins mRNA in the goat mammary gland and effect of the intramammary infusion of lipopolysaccharide on milk cathelicidin-2 concentration. Vet Microbiol. 2014;170:125–34.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang GW, Lai SJ, Yoshimura Y, Isobe N. Messenger RNA expression and immunolocalization of psoriasin in the goat mammary gland and its milk concentration after an intramammary infusion of lipopolysaccharide. Vet J. 2014;202:89–93.

    Article  CAS  PubMed  Google Scholar 

  16. Purba FY, Nii T, Yoshimura Y, Isobe N. Short communication: Production of antimicrobial peptide S100A8 in the goat mammary gland and effect of intramammary infusion of lipopolysaccharide on S100A8 concentration in milk. J Dairy Sci. 2019;102:4674–81.

    Article  CAS  PubMed  Google Scholar 

  17. Tsugami Y, Matsunaga K, Suzuki T, Nishimura T, Kobayashi K. Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling. Mol Nutr Food Res 2017, 61.

  18. Tsugami Y, Suzuki N, Kawahara M, Suzuki T, et al. Establishment of an in vitro culture model to study milk production and the blood-milk barrier with bovine mammary epithelial cells. Anim Sci J. 2020;91:e13355.

    Article  CAS  PubMed  Google Scholar 

  19. Purba FY, Ueda J, Nii T, Yoshimura Y, Isobe N. Effects of intrauterine infusion of bacterial lipopolysaccharides on the mammary gland inflammatory response in goats. Vet Immunol Immunopathol. 2020;219:109972.

    Article  CAS  PubMed  Google Scholar 

  20. Kuwahara K, Yoshimura Y, Isobe N. Effect of steroid hormones on the innate immune response induced by Staphylococcus aureus in the goat mammary gland. Reprod Domest Anim. 2017;52:579–84.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Yan S, Chen L, Shi B, Guo X. Effect of interaction between leucine and acetate on the milk protein synthesis in bovine mammary epithelial cells. Anim Sci J. 2019;90:81–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Wu Y, Sun Y, Dong X, et al. Bacterial endotoxin decreased histone H3 acetylation of bovine mammary epithelial cells and the adverse effect was suppressed by sodium butyrate. BMC Vet Res. 2019;15:267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sharmin MM, Mizusawa M, Hayashi S, Arai W, et al. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells. J Dairy Sci. 2020;103:8643–54.

    Article  CAS  PubMed  Google Scholar 

  24. Xiong H, Guo B, Gan Z, Song D, et al. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci Rep. 2016;6:27070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dou X, Han J, Song W, Dong N, et al. Sodium butyrate improves porcine host defense peptide expression and relieves the inflammatory response upon Toll-like receptor 2 activation and histone deacetylase inhibition in porcine kidney cells. Oncotarget. 2017;8:26532–51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen JS, Faller DV, Spanjaard RA. Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr Cancer Drug Targets. 2003;3:219–36.

    Article  CAS  PubMed  Google Scholar 

  27. Dou X, Gao N, Lan J, Han J, et al. TLR2/EGFR Are Two Sensors for pBD3 and pEP2C Induction by Sodium Butyrate Independent of HDAC Inhibition. J Agric Food Chem. 2020;68:512–22.

    Article  CAS  PubMed  Google Scholar 

  28. Tsugami Y, Wakasa H, Kawahara M, Watanabe A, et al. Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res. 2021;384:435–48.

    Article  CAS  PubMed  Google Scholar 

  29. Isobe N, Hosoda K, Yoshimura Y. Immunolocalization of lingual antimicrobial peptide (LAP) in the bovine mammary gland. Anim Sci J. 2009;80:446–50.

    Article  CAS  PubMed  Google Scholar 

  30. Wang A, Gu Z, Heid B, Akers RM, Jiang H. Identification and characterization of the bovine G protein-coupled receptor GPR41 and GPR43 genes. J Dairy Sci. 2009;92:2696–705.

    Article  CAS  PubMed  Google Scholar 

  31. Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y. Short-chain fatty acid signaling pathways in bovine mammary epithelial cells. Regul Pept. 2009;153:30–6.

    Article  CAS  PubMed  Google Scholar 

  32. Guo W, Liu J, Sun J, Gong Q, et al. Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands. Free Radic Biol Med. 2020;152:728–42.

    Article  CAS  PubMed  Google Scholar 

  33. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    Article  CAS  PubMed  Google Scholar 

  34. Dahlstrand Rudin A, Khamzeh A, Venkatakrishnan V, Basic A, et al. Short chain fatty acids released by Fusobacterium nucleatum are neutrophil chemoattractants acting via free fatty acid receptor 2 (FFAR2). Cell Microbiol. 2021;23:e13348.

    Article  CAS  PubMed  Google Scholar 

  35. Schlatterer K, Beck C, Schoppmeier U, Peschel A, Kretschmer D. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol. 2021;4:928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Madsen P, Rasmussen HH, Leffers H, Honore B, et al. Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol. 1991;97:701–12.

    Article  CAS  PubMed  Google Scholar 

  37. Hagens G, Masouye I, Augsburger E, Hotz R, et al. Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. Biochem J. 1999;339(Pt 2):419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruse M, Broome AM, Eckert RL. S100A7 (psoriasin) interacts with epidermal fatty acid binding protein and localizes in focal adhesion-like structures in cultured keratinocytes. J Invest Dermatol. 2003;121:132–41.

    Article  CAS  PubMed  Google Scholar 

  39. Ali I, Li C, Li L, Kuang M, et al. Effect of acetate, beta-hydroxybutyrate and their interaction on lipogenic gene expression, triglyceride contents and lipid droplet formation in dairy cow mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2021;57:66–75.

    Article  CAS  PubMed  Google Scholar 

  40. Niyonsaba F, Hattori F, Maeyama K, Ogawa H, Okamoto K. Induction of a microbicidal protein psoriasin (S100A7), and its stimulatory effects on normal human keratinocytes. J Dermatol Sci. 2008;52:216–9.

    Article  CAS  PubMed  Google Scholar 

  41. Yumine A, Tsuji G, Furue M. Selective PPARalpha agonist pemafibrate inhibits TNF-alpha-induced S100A7 upregulation in keratinocytes. J Dermatol Sci. 2020;99:69–72.

    Article  CAS  PubMed  Google Scholar 

  42. Oikonomou G, Addis MF, Chassard C, Nader-Macias MEF, et al., Milk Microbiota: What Are We Exactly Talking About? Front Microbiol 2020, 11, 60.

  43. Zhang S, Wang R, Li D, Zhao L, Zhu L. Role of gut microbiota in functional constipation. Gastroenterol Rep (Oxf). 2021;9:392–401.

    Article  Google Scholar 

  44. Yang P, Zhao J. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Sci Nutr. 2021;9:4639–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun X, Luo S, Jiang C, Tang Y, et al. Sodium butyrate reduces bovine mammary epithelial cell inflammatory responses induced by exogenous lipopolysaccharide, by inactivating NF-kappaB signaling. J Dairy Sci. 2020;103:8388–97.

    Article  CAS  PubMed  Google Scholar 

  46. Ochoa-Zarzosa A, Villarreal-Fernandez E, Cano-Camacho H, Lopez-Meza JE. Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes. Microb Pathog. 2009;47:1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yukinori Yoshimura from the Laboratory of Animal Histophysiology, Graduate School of Integrated Sciences for Life, Hiroshima University, for helpful advice on this study.

Author information

Authors and Affiliations

Authors

Contributions

Yusaku Tsugami: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Validation, Writing – Original Draft. Naoki Suzuki: Conceptualization, Writing – Review & Editing. Takahiro Nii: Conceptualization, Resources, Writing – Review & Editing. Naoki Isobe: Conceptualization, Project administration, Supervision, Methodology, Resources, Writing – Review & Editing.

Corresponding author

Correspondence to Naoki Isobe.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Ethical Approval

All experiments were approved by the Animal Research Committee of Hiroshima University (no. C21-20).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsugami, Y., Suzuki, N., Nii, T. et al. Sodium Acetate and Sodium Butyrate Differentially Upregulate Antimicrobial Component Production in Mammary Glands of Lactating Goats. J Mammary Gland Biol Neoplasia 27, 133–144 (2022). https://doi.org/10.1007/s10911-022-09519-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-022-09519-5

Keywords

Navigation