Skip to main content

Advertisement

Log in

Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during the current study are available in the NCBI Gene Expression Omnibus (GSE162553). Other materials generated during this study are available from the corresponding author upon reasonable request.

Code Availability

The code utilized in this study is available from the corresponding author upon reasonable request.

Abbreviations

ADH:

Atypical ductal hyperplasia

BBC:

Basal-like breast cancer

DCIS:

Ductal carcinoma in situ

ER:

Estrogen receptor

FDR:

False discovery rate

FEA:

Flat epithelial atypia

OCT:

Optical coherence tomography

PR:

Progesterone receptor

RMF:

Reduction mammoplasty fibroblast

TCGA:

The Cancer Genome Atlas

*:

Protein truncation

LOH:

Loss of heterozygosity

References

  1. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223:307–17. https://doi.org/10.1002/path.2808.

    Article  CAS  PubMed  Google Scholar 

  2. Sgroi DC. Preinvasive breast cancer. Annu Rev Pathol. 2010;5:193–221. https://doi.org/10.1146/annurev.pathol.4.110807.092306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32. https://doi.org/10.1016/j.ccr.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  4. Cichon MA, Degnim AC, Visscher DW, Radisky DC. Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer. J Mammary Gland Biol Neoplasia. 2010;15:389–97. https://doi.org/10.1007/s10911-010-9195-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, Richardson A, Violette S, Nikolskaya T, Nikolsky Y, Bauerlein EL, Hahn WC, Gelman RS, Allred C, Bissell MJ, Schnitt S, Polyak K. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell. 2008;13:394–406. https://doi.org/10.1016/j.ccr.2008.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100:5974–9. https://doi.org/10.1073/pnas.0931261100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11:R7. https://doi.org/10.1186/bcr2222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chhetri RK, Phillips ZF, Troester MA, Oldenburg AL. Longitudinal study of mammary epithelial and fibroblast co-cultures using optical coherence tomography reveals morphological hallmarks of pre-malignancy. PLoS ONE. 2012;7:e49148. https://doi.org/10.1371/journal.pone.0049148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casbas-Hernandez P, D’Arcy M, Roman-Perez E, Brauer HA, McNaughton K, Miller SM, Chhetri RK, Oldenburg AL, Fleming JM, Amos KD, Makowski L, Troester MA. Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Breast Cancer Res. 2013;15:R82. https://doi.org/10.1186/bcr3476.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295:2492–502. https://doi.org/10.1001/jama.295.21.2492.

    Article  CAS  PubMed  Google Scholar 

  11. Troester MA, Herschkowitz JI, Oh DS, He X, Hoadley KA, Barbier CS, Perou CM. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer. 2006;6:276. https://doi.org/10.1186/1471-2407-6-276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  13. Basolo F, Elliott J, Tait L, Chen XQ, Maloney T, Russo IH, Pauley R, Momiki S, Caamano J, Klein-Szanto AJ, et al. Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol Carcinog. 1991;4:25–35. https://doi.org/10.1002/mc.2940040106.

    Article  CAS  PubMed  Google Scholar 

  14. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32:35–48. https://doi.org/10.3233/BD-2010-0307.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97. https://doi.org/10.1158/0008-5472.CAN-07-2017.

    Article  CAS  PubMed  Google Scholar 

  16. Miller FR, Soule HD, Tait L, Pauley RJ, Wolman SR, Dawson PJ, Heppner GH. Xenograft model of progressive human proliferative breast disease. J Natl Cancer Inst. 1993;85:1725–32. https://doi.org/10.1093/jnci/85.21.1725.

    Article  CAS  PubMed  Google Scholar 

  17. Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR. MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol. 1996;148:313–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst. 2000;92:1185–6. https://doi.org/10.1093/jnci/92.14.1185a.

    Article  CAS  PubMed  Google Scholar 

  19. Hu X, Stern HM, Ge L, O’Brien C, Haydu L, Honchell CD, Haverty PM, Peters BA, Wu TD, Amler LC, Chant J, Stokoe D, Lackner MR, Cavet G. Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res. 2009;7:511–22. https://doi.org/10.1158/1541-7786.MCR-08-0107.

    Article  CAS  PubMed  Google Scholar 

  20. Camp JT, Elloumi F, Roman-Perez E, Rein J, Stewart DA, Harrell JC, Perou CM, Troester MA. Interactions with fibroblasts are distinct in Basal-like and luminal breast cancers. Mol Cancer Res. 2011;9:3–13. https://doi.org/10.1158/1541-7786.MCR-10-0372.

    Article  CAS  PubMed  Google Scholar 

  21. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC. Telomerase maintains telomere structure in normal human cells. Cell. 2003;114:241–53.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson KR, Leight JL, Weaver VM. Demystifying the effects of a three-dimensional microenvironment in tissue morphogenesis. Methods Cell Biol. 2007;83:547–83. https://doi.org/10.1016/S0091-679X(07)83023-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu X, Fuller AM, Blackmon R, Troester MA, Oldenburg AL. Quantification of the Effect of Toxicants on the Intracellular Kinetic Energy and Cross-Sectional Area of Mammary Epithelial Organoids by OCT Fluctuation Spectroscopy. Toxicol Sci. 2018;162:234–40. https://doi.org/10.1093/toxsci/kfx245.

    Article  CAS  PubMed  Google Scholar 

  24. Krawitz BD, Mo S, Geyman LS, Agemy SA, Scripsema NK, Garcia PM, Chui TYP, Rosen RB. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res. 2017;139:177–86. https://doi.org/10.1016/j.visres.2016.09.019.

    Article  PubMed  Google Scholar 

  25. Buess M, Nuyten DS, Hastie T, Nielsen T, Pesich R, Brown PO. Characterization of heterotypic interaction effects in vitro to deconvolute global gene expression profiles in cancer. Genome Biol. 2007;8:R191. https://doi.org/10.1186/gb-2007-8-9-r191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Creighton CJ, Casa A, Lazard Z, Huang S, Tsimelzon A, Hilsenbeck SG, Osborne CK, Lee AV. Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol. 2008;26:4078–85. https://doi.org/10.1200/JCO.2007.13.4429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Group M, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52. https://doi.org/10.1038/nature10983.

    Article  CAS  Google Scholar 

  28. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A, Bissell MJ, Osborne TF, Tian B, Lowe SW, Silva JM, Borresen-Dale AL, Levine AJ, Bargonetti J, Prives C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell. 2012;148:244–58. https://doi.org/10.1016/j.cell.2011.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiss MB, Vitolo MI, Mohseni M, Rosen DM, Denmeade SR, Park BH, Weber DJ, Bachman KE. Deletion of p53 in human mammary epithelial cells causes chromosomal instability and altered therapeutic response. Oncogene. 2010;29:4715–24. https://doi.org/10.1038/onc.2010.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem. 2011;286:16218–28. https://doi.org/10.1074/jbc.M110.214585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. EJ Pereira JS Burns CY Lee T Marohl D Calderon L Wang KA Atkins CC Wang KA Janes 2020 Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies Sci Signal 13 https://doi.org/10.1126/scisignal.aba4200

  32. Barnabas N, Cohen D. Phenotypic and Molecular Characterization of MCF10DCIS and SUM Breast Cancer Cell Lines. Int J Breast Cancer. 2013;2013:872743. https://doi.org/10.1155/2013/872743.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27. https://doi.org/10.1016/j.ccr.2006.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HH. Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology. 2013;63:225–33. https://doi.org/10.1111/his.12156.

    Article  PubMed  Google Scholar 

  35. Cochaud S, Giustiniani J, Thomas C, Laprevotte E, Garbar C, Savoye AM, Cure H, Mascaux C, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A, Bastid J. IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep. 2013;3:3456. https://doi.org/10.1038/srep03456.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benevides L, da Fonseca DM, Donate PB, Tiezzi DG, De Carvalho DD, de Andrade JM, Martins GA, Silva JS. IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment. Cancer Res. 2015;75:3788–99. https://doi.org/10.1158/0008-5472.CAN-15-0054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma YF, Chen C, Li D, Liu M, Lv ZW, Ji Y, Xu J. Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer. Oncotarget. 2017;8:7614–24. https://doi.org/10.18632/oncotarget.13819.

    Article  PubMed  Google Scholar 

  38. Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43:1518–28. https://doi.org/10.1002/eji.201242951.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008;10:R95. https://doi.org/10.1186/bcr2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor alpha-mediated increase of hypoxia-inducible factor-1alpha and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett. 2017;13:3253–60. https://doi.org/10.3892/ol.2017.5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–8. https://doi.org/10.1038/nature14282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Radosavljevic G, Ljujic B, Jovanovic I, Srzentic Z, Pavlovic S, Zdravkovic N, Milovanovic M, Bankovic D, Knezevic M, Acimovic LJ, Arsenijevic N. Interleukin-17 may be a valuable serum tumor marker in patients with colorectal carcinoma. Neoplasma. 2010;57:135–44.

    Article  CAS  PubMed  Google Scholar 

  43. Li Q, Xu X, Zhong W, Du Q, Yu B, Xiong H. IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cell Mol Immunol. 2015;12:366–72. https://doi.org/10.1038/cmi.2014.122.

    Article  CAS  PubMed  Google Scholar 

  44. Zhong W, Xu X, Zhu Z, Yang L, Du H, Xia Z, Yuan Z, Xiong H, Du Q, Wei Y, Li Q. Increased interleukin-17A levels promote rituximab resistance by suppressing p53 expression and predict an unfavorable prognosis in patients with diffuse large B cell lymphoma. Int J Oncol. 2018. https://doi.org/10.3892/ijo.2018.4299.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 1992;89:9064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137:231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65. https://doi.org/10.1038/nmeth1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadlonova A, Bowe DB, Novak Z, Mukherjee S, Duncan VE, Page GP, Frost AR. Identification of molecular distinctions between normal breast-associated fibroblasts and breast cancer-associated fibroblasts. Cancer Microenviron. 2009;2:9–21. https://doi.org/10.1007/s12307-008-0017-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sadlonova A, Novak Z, Johnson MR, Bowe DB, Gault SR, Page GP, Thottassery JV, Welch DR, Frost AR. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res. 2005;7:R46-59. https://doi.org/10.1186/bcr949.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Katherine Hoadley, PhD, for assistance with TCGA data. We would also like to thank Yan Shi, PhD, of the UNC High-Throughput Sequencing Facility (HTSF) for assistance with Tape Station and microarray assays. The HTSF is supported in part by the UNC Lineberger Comprehensive Cancer Center and the University Cancer Research Fund.

Funding

This work was supported by P30 ES010126, U01 CA179715, and U01 ES019472 to MAT, and by R21 CA179204 and NSF CBET 1803830 to ALO. AMF received additional support from the UNC Royster Society of Fellows. AMH was supported by the UNC Program in Translational Medicine (T32 GM122741).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ashley M. Fuller, Melissa A. Troester; Methodology: Ashley M. Fuller, Lin Yang, Jason R. Pirone, Amy L. Oldenburg, Alina M. Hamilton; Formal analysis and investigation: Ashley M. Fuller; Writing—original draft preparation: Ashley M. Fuller; Writing—review and editing: Ashley M. Fuller, Lin Yang, Alina M. Hamilton, Jason R. Pirone, Amy L. Oldenburg, Melissa A. Troester; Funding acquisition: Ashley M. Fuller, Amy L. Oldenburg, Melissa A. Troester; Resources: Amy L. Oldenburg, Melissa A. Troester; Supervision: Melissa A. Troester.

Corresponding author

Correspondence to Melissa A. Troester.

Ethics declarations

Conflicts of Interest

The authors declare no potential conflicts of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

This article does not contain any studies with human participants performed by any of the authors.

Consent for Publication

This manuscript has been approved by all co-authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 466 KB)

Supplementary file2 (XLSX 526 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, A.M., Yang, L., Hamilton, A.M. et al. Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis. J Mammary Gland Biol Neoplasia 26, 89–99 (2021). https://doi.org/10.1007/s10911-020-09477-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09477-w

Keywords

Navigation