Skip to main content
Log in

Review: wood composites as sustainable energy conversion materials for efficient solar energy harvesting and light management

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Harnessing and effectively utilizing abundant and sustainable solar energy is regarded as a promising solution to the global energy crisis. Forests, being nature’s largest light energy capturing units, bestow oxygen and shelter upon all living beings, making them an invaluable gift to humanity. Apart from serving as natural air ionizers, load-bearing structures, and traditional building materials, wood and its derivatives can also be employed in cutting-edge sustainable applications. Their manifold advantages encompass a naturally porous and hierarchical structure for efficient water and nutrient transport, low thermal conductivity, mechanical stability, as well as versatile chemistry achieved through structural engineering and chemical or thermal modifications. This review provides an overview of the synergistic optical and thermal applications of wood for seawater desalination, wastewater treatment, and light management in energy-efficient buildings. The emphasis lies on elucidating the structure and application properties of wood with respect to establishing a symbiotic relationship between solar energy and wood towards sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Guney MS (2016) Solar power and application methods. Renew Sustain Energy Rev 57:776–785. https://doi.org/10.1016/j.rser.2015.12.055

    Article  Google Scholar 

  2. Mekhilef S, Faramarzi SZ, Saidur R, Salam Z (2013) The application of solar technologies for sustainable development of agricultural sector. Renew Sustain Energy Rev 18:583–594. https://doi.org/10.1016/j.rser.2012.10.049

    Article  Google Scholar 

  3. Li J, Chen C, Zhu JY et al (2021) In situ wood delignification toward sustainable applications. Acc Mater Res 2:606–620. https://doi.org/10.1021/accountsmr.1c00075

    Article  CAS  Google Scholar 

  4. Alvarez-Vasco C, Ma R, Quintero M et al (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141. https://doi.org/10.1039/C6GC01007E

    Article  CAS  Google Scholar 

  5. Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1–21. https://doi.org/10.1016/j.rser.2018.02.003

    Article  CAS  Google Scholar 

  6. Kai D, Tan MJ, Chee PL et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200. https://doi.org/10.1039/C5GC02616D

    Article  CAS  Google Scholar 

  7. Pilate G, Guiney E, Holt K et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612. https://doi.org/10.1038/nbt0602-607

    Article  CAS  PubMed  Google Scholar 

  8. Gan W, Chen C, Wang Z et al (2020) Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv Funct Mater 30:1909196. https://doi.org/10.1002/adfm.201909196

    Article  CAS  Google Scholar 

  9. Kojima E, Yamasaki M, Imaeda K et al (2020) Effects of thermal modification on the mechanical properties of the wood cell wall of soft wood: behavior of S2 cellulose microfibrils under tensile loading. J Mater Sci 55:5038–5047. https://doi.org/10.1007/s10853-020-04346-7

    Article  ADS  CAS  Google Scholar 

  10. Ji T, Li K, Chen S et al (2023) Eco-friendly, mechanically strong, and thermally stable mica/wood electrical insulating film. J Mater Sci 58:9967–9977. https://doi.org/10.1007/s10853-023-08531-2

    Article  ADS  CAS  Google Scholar 

  11. Li W, Chen Z, Yu H et al (2021) Wood-derived carbon materials and light-emitting materials. Adv Mater 33:2000596. https://doi.org/10.1002/adma.202000596

    Article  CAS  Google Scholar 

  12. Zhu M, Li Y, Chen G et al (2017) Tree-inspired design for high-efficiency water extraction. Adv Mater 29:1704107. https://doi.org/10.1002/adma.201704107

    Article  CAS  Google Scholar 

  13. Chen C, Kuang Y, Zhu S et al (2020) Structure–property–function relationships of natural and engineered wood. Nat Rev Mater 5:642–666. https://doi.org/10.1038/s41578-020-0195-z

    Article  ADS  CAS  Google Scholar 

  14. Chen Z, Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev 73:610–621. https://doi.org/10.1016/j.rser.2017.01.166

    Article  CAS  Google Scholar 

  15. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008

    Article  CAS  Google Scholar 

  16. Asante B, Appelt J, Yan L et al (2023) Influence of wood pretreatment, hardwood and softwood extractives on the compressive strength of fly ash-based geopolymer composite. J Mater Sci 58:5625–5641. https://doi.org/10.1007/s10853-023-08371-0

    Article  ADS  CAS  Google Scholar 

  17. Guo X, Daka S, Fan M et al (2023) Reversibly thermochromic wood. J Mater Sci 58:2188–2197. https://doi.org/10.1007/s10853-022-08042-6

    Article  ADS  CAS  Google Scholar 

  18. Hill C, Kymäläinen M, Rautkari L (2022) Review of the use of solid wood as an external cladding material in the built environment. J Mater Sci 57:9031–9076. https://doi.org/10.1007/s10853-022-07211-x

    Article  ADS  CAS  Google Scholar 

  19. Triquet J, Blanchet P, Landry V (2021) Chemical surface densification of hardwood through lateral monomer impregnation and in situ electron beam polymerization, part I: density profile and surface hardness of three hardwood species. J Mater Sci 56:11309–11323. https://doi.org/10.1007/s10853-021-06009-7

    Article  ADS  CAS  Google Scholar 

  20. Zhu H, Luo W, Ciesielski PN et al (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

    Article  CAS  PubMed  Google Scholar 

  21. Li T, Liu H, Zhao X et al (2018) Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat. Rapid Water Transport Adv Funct Mater 28:1707134. https://doi.org/10.1002/adfm.201707134

    Article  CAS  Google Scholar 

  22. Jia C, Li Y, Yang Z et al (2017) Rich mesostructures derived from natural woods for solar steam generation. Joule 1:588–599. https://doi.org/10.1016/j.joule.2017.09.011

    Article  Google Scholar 

  23. Degefu DM, Weijun H, Zaiyi L et al (2018) Mapping monthly water scarcity in global transboundary basins at country-basin mesh based spatial resolution. Sci Rep 8:2144. https://doi.org/10.1038/s41598-018-20032-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323. https://doi.org/10.1126/sciadv.1500323

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Tao P, Ni G, Song C et al (2018) Solar-driven interfacial evaporation. Nat Energy 3:1031–1041. https://doi.org/10.1038/s41560-018-0260-7

    Article  ADS  Google Scholar 

  26. Chen C, Kuang Y, Hu L (2019) Challenges and opportunities for solar evaporation. Joule 3:683–718. https://doi.org/10.1016/j.joule.2018.12.023

    Article  CAS  Google Scholar 

  27. Ibrahim I, Bhoopal V, Seo DH et al (2021) Biomass-based photothermal materials for interfacial solar steam generation: a review. Mater Today Energy 21:100716. https://doi.org/10.1016/j.mtener.2021.100716

    Article  CAS  Google Scholar 

  28. Cao S, Rathi P, Wu X et al (2021) Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv Mater 33:2000922. https://doi.org/10.1002/adma.202000922

    Article  CAS  Google Scholar 

  29. Liu K-K, Jiang Q, Tadepalli S et al (2017) Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl Mater Interfaces 9:7675–7681. https://doi.org/10.1021/acsami.7b01307

    Article  CAS  PubMed  Google Scholar 

  30. Zhu M, Li Y, Chen F et al (2018) Plasmonic wood for high-efficiency solar steam generation. Adv Energy Mater 8:1701028. https://doi.org/10.1002/aenm.201701028

    Article  CAS  Google Scholar 

  31. Ghafurian MM, Niazmand H, Ebrahimnia-Bajestan E, Taylor RA (2020) Wood surface treatment techniques for enhanced solar steam generation. Renew Energy 146:2308–2315. https://doi.org/10.1016/j.renene.2019.08.036

    Article  CAS  Google Scholar 

  32. Han J-C, Deng R, Chen H et al (2022) Real-time and in situ monitoring of evaporation rate and salt precipitation during interfacial solar evaporation. Nano Energy 104:107961. https://doi.org/10.1016/j.nanoen.2022.107961

    Article  CAS  Google Scholar 

  33. Chen C, Li Y, Song J et al (2017) Highly flexible and efficient solar steam generation device. Adv Mater 29:1701756. https://doi.org/10.1002/adma.201701756

    Article  CAS  Google Scholar 

  34. Wu X, Chen GY, Zhang W et al (2017) A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv Sustain Syst 1:1770102. https://doi.org/10.1002/adsu.201700105

    Article  Google Scholar 

  35. Chen T, Wu Z, Liu Z et al (2020) Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl Mater Interfaces 12:19511–19518. https://doi.org/10.1021/acsami.0c01815

    Article  CAS  PubMed  Google Scholar 

  36. Xue G, Liu K, Chen Q et al (2017) Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl Mater Interfaces 9:15052–15057. https://doi.org/10.1021/acsami.7b01992

    Article  CAS  PubMed  Google Scholar 

  37. Chen S, Sun Z, Xiang W et al (2020) Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 76:104998. https://doi.org/10.1016/j.nanoen.2020.104998

    Article  CAS  Google Scholar 

  38. Yang J, Chen Y, Jia X et al (2020) Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl Mater Interfaces 12:47029–47037. https://doi.org/10.1021/acsami.0c14068

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Chen C, Wen H et al (2018) Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. J Mater Chem A 6:18839–18846. https://doi.org/10.1039/C8TA05924A

    Article  CAS  Google Scholar 

  40. Wang M, Wang P, Zhang J et al (2019) A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. Chemsuschem 12:467–472. https://doi.org/10.1002/cssc.20180248

    Article  CAS  PubMed  Google Scholar 

  41. Zhu J, Wang Y, Qiu X et al (2023) Biomimetic seawater evaporator based on organic 3D light capture and suspension-protection mechanism for in situ marine cultivation. Adv Funct Mater. https://doi.org/10.1002/adfm.202306604

    Article  Google Scholar 

  42. Shi L, Zhang M, Du X et al (2022) In situ polymerization of pyrrole on elastic wood for high efficiency seawater desalination and oily water purification. J Mater Sci 57:16317–16332. https://doi.org/10.1007/s10853-022-07632-8

    Article  ADS  CAS  Google Scholar 

  43. Qu M, Yan J, Ge J et al (2023) Nature-inspired wood-based solar evaporation system for efficient desalination and water purification. J Mater Sci 58:6220–6236. https://doi.org/10.1007/s10853-023-08420-8

    Article  ADS  CAS  Google Scholar 

  44. Xia Y, Hou Q, Jubaer H et al (2019) Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ Sci 12:1840–1847. https://doi.org/10.1039/C9EE00692C

    Article  CAS  Google Scholar 

  45. He S, Chen C, Kuang Y et al (2019) Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ Sci 12:1558–1567. https://doi.org/10.1039/C9EE00945K

    Article  CAS  Google Scholar 

  46. Kuang Y, Chen C, He S et al (2019) A high-performance self-regenerating solar evaporator for continuous water desalination. Adv Mater 31:1900498. https://doi.org/10.1002/adma.201900498

    Article  CAS  Google Scholar 

  47. Digaitis R (2021) Targeted acetylation of wood: a tool for tuning wood-water interactions. Cellulose 28:8009–8025. https://doi.org/10.1007/s10570-021-04033-z

    Article  CAS  Google Scholar 

  48. Xiong S, Long H, Tang G et al (2015) The management in response to marine oil spill from ships in China: a systematic review. Mar Pollut Bull 96:7–17. https://doi.org/10.1016/j.marpolbul.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  49. Paul JH, Hollander D, Coble P et al (2013) Toxicity and mutagenicity of gulf of mexico waters during and after the deepwater horizon oil spill. Environ Sci Technol 47:9651–9659. https://doi.org/10.1021/es401761h

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) compressible carbon nanotube-graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220. https://doi.org/10.1021/ez500021w

    Article  CAS  Google Scholar 

  51. Zhang N, Jiang W, Wang T et al (2015) Facile preparation of magnetic poly(styrene-divinylbenzene) foam and its application as an oil absorbent. Ind Eng Chem Res 54:11033–11039. https://doi.org/10.1021/acs.iecr.5b01847

    Article  CAS  Google Scholar 

  52. Pan Y, Shi K, Peng C et al (2014) Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Appl Mater Interfaces 6:8651–8659. https://doi.org/10.1021/am5014634

    Article  CAS  PubMed  Google Scholar 

  53. Khosravi M, Azizian S (2015) Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl Mater Interfaces 7:25326–25333. https://doi.org/10.1021/acsami.5b07504

    Article  CAS  PubMed  Google Scholar 

  54. Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Interfaces 6:14181–14188. https://doi.org/10.1021/am503503m

    Article  CAS  PubMed  Google Scholar 

  55. Wang K, Liu X, Tan Y et al (2019) Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem Eng J 371:769–780. https://doi.org/10.1016/j.cej.2019.04.108

    Article  CAS  Google Scholar 

  56. Fu Q, Ansari F, Zhou Q, Berglund LA (2018) Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano 12:2222–2230. https://doi.org/10.1021/acsnano.8b00005

    Article  CAS  PubMed  Google Scholar 

  57. Guan H, Cheng Z, Wang X (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12:10365–10373. https://doi.org/10.1021/acsnano.8b05763

    Article  CAS  PubMed  Google Scholar 

  58. Yang R, Cao Q, Liang Y et al (2020) High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem Eng J 401:126150. https://doi.org/10.1016/j.cej.2020.126150

    Article  CAS  Google Scholar 

  59. Chao W, Wang S, Li Y et al (2020) Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chem Eng J 400:125865. https://doi.org/10.1016/j.cej.2020.125865

    Article  CAS  Google Scholar 

  60. Wang P-L, Ma C, Yuan Q et al (2022) Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J Colloid Interface Sci 606:971–982. https://doi.org/10.1016/j.jcis.2021.08.092

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Shannon MA, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. https://doi.org/10.1038/nature06599

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Qadir M, Wichelns D, Raschid-Sally L et al (2010) The challenges of wastewater irrigation in developing countries. Agric Water Manag 97:561–568. https://doi.org/10.1016/j.agwat.2008.11.004

    Article  Google Scholar 

  63. Raja S, Cheema HMN, Babar S et al (2015) Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agric Water Manag 158:26–34. https://doi.org/10.1016/j.agwat.2015.04.004

    Article  Google Scholar 

  64. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287. https://doi.org/10.1021/es506351r

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang Z, Chen L, Chen Y et al (2023) All-in-one solar-driven evaporator for high-performance water desalination and synchronous volatile organic compound degradation. Desalination 555:116536. https://doi.org/10.1016/j.desal.2023.116536

    Article  CAS  Google Scholar 

  66. Boutilier MSH, Lee J, Chambers V et al (2014) Water filtration using plant xylem. PLoS ONE 9:e89934. https://doi.org/10.1371/journal.pone.0089934

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen F, Gong AS, Zhu M et al (2017) Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282

    Article  CAS  PubMed  Google Scholar 

  68. Che W, Xiao Z, Wang Z et al (2019) Wood-based mesoporous filter decorated with silver nanoparticles for water purification. ACS Sustain Chem Eng 7:5134–5141. https://doi.org/10.1021/acssuschemeng.8b06001

    Article  CAS  Google Scholar 

  69. Guo R, Cai X, Liu H et al (2019) In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ Sci Technol 53:2705–2712. https://doi.org/10.1021/acs.est.8b06564

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Bie C, Yu H, Cheng B et al (2021) Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv Mater 33:2003521. https://doi.org/10.1002/adma.202003521

    Article  CAS  Google Scholar 

  71. Buzzetti L, Crisenza GEM, Melchiorre P (2019) Mechanistic studies in photocatalysis. Angew Chem Int Ed 58:3730–3747. https://doi.org/10.1002/anie.201809984

    Article  CAS  Google Scholar 

  72. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997. https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  73. Wang H, Li X, Zhao X et al (2022) A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin J Catal 43:178–214. https://doi.org/10.1016/S1872-2067(21)63910-4

    Article  CAS  Google Scholar 

  74. Liu X, Wan C, Li X et al (2021) Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment. Front Environ Sci Eng 15:54. https://doi.org/10.1007/s11783-020-1346-6

    Article  ADS  CAS  Google Scholar 

  75. Yang T, Liu Y, Xia G et al (2021) Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2. J Clean Prod 329:129726. https://doi.org/10.1016/j.jclepro.2021.129726

    Article  CAS  Google Scholar 

  76. Wang Z, Hu M, Wang Q, Li L (2022) Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O5 photocatalysts. J Clean Prod 332:130054. https://doi.org/10.1016/j.jclepro.2021.130054

    Article  CAS  Google Scholar 

  77. Xie D, He M, Li X et al (2022) Tree-inspired efficient solar evaporation and simultaneous in-situ purification of ultra-highly concentrated mixed volatile organic wastewater. Nano Energy 93:106802. https://doi.org/10.1016/j.nanoen.2021.106802

    Article  CAS  Google Scholar 

  78. Shi L, Zou X, Wang T et al (2022) Sunlight photocatalytic degradation of ofloxacin using UiO-66/wood composite photocatalysts. Chin Chem Lett 33:442–446. https://doi.org/10.1016/j.cclet.2021.06.048

    Article  CAS  Google Scholar 

  79. Yu X, Zhu F, Yang B et al (2023) Novel BiVO4/SiC/Cu2O ternary composite photocatalyst coupled with carbonized wood for simultaneous water evaporation and purification driven by solar energy. Sep Purif Technol 322:124307. https://doi.org/10.1016/j.seppur.2023.124307

    Article  CAS  Google Scholar 

  80. Dong Y, Du W, Gao X, Guo M (2022) A TiO2/CN-decorated wood carbon for efficient clean water production via simultaneous decontamination and evaporation. J Clean Prod 365:132827. https://doi.org/10.1016/j.jclepro.2022.132827

    Article  CAS  Google Scholar 

  81. Du X, Shi L, Pang J et al (2022) Fabrication of superwetting and antimicrobial wood-based mesoporous composite decorated with silver nanoparticles for purifying the polluted-water with oils, dyes and bacteria. J Environ Chem Eng 10:107152. https://doi.org/10.1016/j.jece.2022.107152

    Article  CAS  Google Scholar 

  82. Zhang Y, Li X, Chen J et al (2023) Porous spherical Cu2O supported by wood-based biochar skeleton for the adsorption-photocatalytic degradation of methyl orange. Appl Surf Sci 611:155744. https://doi.org/10.1016/j.apsusc.2022.155744

    Article  CAS  Google Scholar 

  83. Zhang W, Li L, Zhang X et al (2022) Adsorption of Zn(ii) on amination@wood-aerogel and high-value reuse to ZnO/ZnS as an efficient photocatalyst. J Mater Chem A 10:18644–18656. https://doi.org/10.1039/d2ta05001c

    Article  CAS  Google Scholar 

  84. Li S, Li Z, Li L et al (2023) TiO2-WO3 loaded onto wood surface for photocatalytic degradation of formaldehyde. Forests 14:503. https://doi.org/10.3390/f14030503

    Article  Google Scholar 

  85. Shen Z, Wang X, Fan D et al (2023) Wood-hydrogel composites coated with C3N4 photocatalyst for synchronous solar steam generation and photocatalytic degradation. J Mater Sci 58:13154–13164. https://doi.org/10.1007/s10853-023-08849-x

    Article  ADS  CAS  Google Scholar 

  86. Sheng C, Wang C, Wang H et al (2017) Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. J Hazard Mater 328:127–139. https://doi.org/10.1016/j.jhazmat.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  87. Li D, Chen Y, Yin F et al (2018) Facile synthesis of Mn/N-doped TiO2 on wood-based activated carbon fiber as an efficient visible-light-driven photocatalyst. J Mater Sci 53:11671–11683. https://doi.org/10.1007/s10853-018-2429-7

    Article  ADS  CAS  Google Scholar 

  88. Guo S, Li X, Li J, Wei B (2021) Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat Commun 12:1343. https://doi.org/10.1038/s41467-021-21526-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han H, Huang K, Yao Y et al (2022) Enhanced photocatalytic splitting of photothermally induced water vapor to evolve hydrogen. Chem Eng J 450:138419. https://doi.org/10.1016/j.cej.2022.138419

    Article  CAS  Google Scholar 

  90. Han H, Meng X (2023) Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen. J Colloid Interface Sci 650:846–856. https://doi.org/10.1016/j.jcis.2023.07.059

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Jacucci G, Schertel L, Zhang Y et al (2021) Light management with natural materials: from whiteness to transparency. Adv Mater 33:2001215. https://doi.org/10.1002/adma.202001215

    Article  CAS  Google Scholar 

  92. Mi R, Li T, Dalgo D et al (2020) A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv Funct Mater 30:1907511. https://doi.org/10.1002/adfm.201907511

    Article  CAS  Google Scholar 

  93. Li Y, Yang X, Fu Q et al (2018) Towards centimeter thick transparent wood through interface manipulation. J Mater Chem A 6:1094–1101. https://doi.org/10.1039/C7TA09973H

    Article  CAS  Google Scholar 

  94. Song J, Chen C, Wang C et al (2017) Superflexible wood. ACS Appl Mater Interfaces 9:23520–23527. https://doi.org/10.1021/acsami.7b06529

    Article  CAS  PubMed  Google Scholar 

  95. Xia Q, Chen C, Li T et al (2021) Solar-assisted fabrication of large-scale, patternable transparent wood. Sci Adv 7:eabd7342. https://doi.org/10.1126/sciadv.abd7342

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berglund LA, Burgert I (2018) Bioinspired wood nanotechnology for functional materials. Adv Mater 30:1704285. https://doi.org/10.1002/adma.201704285

    Article  CAS  Google Scholar 

  97. Li Y, Fu Q, Yang X, Berglund L (2018) Transparent wood for functional and structural applications. Philos Trans R Soc Math Phys Eng Sci 376:20170182. https://doi.org/10.1098/rsta.2017.0182

    Article  ADS  CAS  Google Scholar 

  98. Wu Y, Zhou J, Huang Q et al (2020) Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega 5:1782–1788. https://doi.org/10.1021/acsomega.9b02498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu M, Song J, Li T et al (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28:5181–5187. https://doi.org/10.1002/adma.201600427

    Article  CAS  PubMed  Google Scholar 

  100. Zhu M, Li T, Davis CS et al (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339. https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  101. Li T, Zhu M, Yang Z et al (2016) Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater 6:1601122. https://doi.org/10.1002/aenm.201601122

    Article  ADS  CAS  Google Scholar 

  102. Yu Z, Yao Y, Yao J et al (2017) Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. J Mater Chem A 5:6019–6024. https://doi.org/10.1039/C7TA00261K

    Article  CAS  Google Scholar 

  103. Mi R, Chen C, Keplinger T et al (2020) Scalable aesthetic transparent wood for energy efficient buildings. Nat Commun 11:3836. https://doi.org/10.1038/s41467-020-17513-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jia C, Li T, Chen C et al (2017) Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy 36:366–373. https://doi.org/10.1016/j.nanoen.2017.04.059

    Article  CAS  Google Scholar 

  105. Jia C, Chen C, Mi R et al (2019) Clear wood toward high-performance building materials. ACS Nano 13:9993–10001. https://doi.org/10.1021/acsnano.9b00089

    Article  CAS  PubMed  Google Scholar 

  106. Walther G-R, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Li T, Zhai Y, He S et al (2019) A radiative cooling structural material. Science 364:760–763. https://doi.org/10.1126/science.aau9101

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Hu X, Zhang Y, Zhang J et al (2022) Sonochemically-coated transparent wood with ZnO: passive radiative cooling materials for energy saving applications. Renew Energy 193:398–406. https://doi.org/10.1016/j.renene.2022.05.008

    Article  CAS  Google Scholar 

  109. Wu L, Chen Y, Li Y et al (2021) Functionally integrated g-C3N4@wood-derived carbon with an orderly interconnected porous structure. Appl Surf Sci 540:148440. https://doi.org/10.1016/j.apsusc.2020.148440

    Article  CAS  Google Scholar 

  110. Fan D-Q, Liao Y-M, Wang X et al (2023) Integrating high-entropy alloy oxides with porous wood architectures for boosted salt-resistant water evaporation. Rare Met 42:3960–3968. https://doi.org/10.1007/s12598-023-02430-w

    Article  CAS  Google Scholar 

  111. Wang Y, Liu H, Chen C et al (2019) All natural, high efficient groundwater extraction via solar steam/vapor generation. Adv Sustain Syst 3:1800055. https://doi.org/10.1002/adsu.201800055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22372081), and Natural Science Foundation of Jiangsu Province (BK20231297).

Author information

Authors and Affiliations

Authors

Contributions

XW performed writing-original draft. XX, DF, and GZ did literatures analysis and manuscript revision. YL contributed to writing-review and editing and funding acquisition.

Corresponding author

Correspondence to Yi Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, X., Fan, D. et al. Review: wood composites as sustainable energy conversion materials for efficient solar energy harvesting and light management. J Mater Sci 59, 4383–4403 (2024). https://doi.org/10.1007/s10853-024-09443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09443-5

Navigation