Skip to main content

Advertisement

Log in

A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wound dressings play an important role in the wound healing process. For the shortcomings of traditional wound dressings, hydrogel wound dressing with high strength and high water content is a new ideal wound dressing. In this study, polyvinyl alcohol and sodium alginate were selected as raw materials to form the first layer of network structure by physical cross-linking and chemical cross-linking. Then, the double network structure composite hydrogels were obtained by immersed in tannic acid solution. The microstructure, mechanical properties, water content, swelling ratio, antibacterial properties, adhesion properties and rheology of the hydrogels were subsequently investigated. The obtained double network hydrogels have high mechanical properties due to chemical cross-linking and hydrogen bonding interactions, and the maximum tensile strength can reach 4.06 MPa and the elongation at break is up to 569.12%. The optimized calculations from molecular simulations proved that the strengths of the three different types of hydrogen bonds formed reached 37.70, 54.98 and 60.50 kJ/mol, respectively, also justifying the high mechanical strength of the hydrogels. The hydrogel can form good adhesion on various substrate materials such as wood, plastic, glass and pigskin with maximum adhesion strengths of 200.6, 24.8, 24.4 and 13.1 kPa, respectively. Wood surface has higher adhesion strength due to the presence of large amount of cellulose and hydrogen bonds formed by hydrogel. In conclusion, good adhesion can be formed on the surface of different materials. It was a wound dressing with potential application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available. All data generated or analysed during this study are included in this published article.

References

  1. Wang L, Li D, Shen Y, Liu F, Zhou Y, Wu H, Liu Q, Deng B (2021) Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property. Int J Biol Macromol 192:350–359. https://doi.org/10.1016/j.ijbiomac.2021.09.145

    Article  CAS  Google Scholar 

  2. Yang Y, Liang Y, Chen J, Duan X, Guo B (2022) Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioactive Materials 8:341–354. https://doi.org/10.1016/j.bioactmat.2021.06.014

    Article  CAS  Google Scholar 

  3. Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X (2021) High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohyd Polym 256:117590. https://doi.org/10.1016/j.carbpol.2020.117590

    Article  CAS  Google Scholar 

  4. Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDF, Ricardo NMPS, Kaplan DL, Ribeiro MENP (2023) Alginate/polyvinyl alcohol films for wound healing: advantages and challenges. J Biomed Materials Res Part B Appl Biomater 111:220–233. https://doi.org/10.1002/jbm.b.35146

    Article  CAS  Google Scholar 

  5. Dong L, Han Z, Zhang H, Yang R, Fang J, Wang L, Li X, Li X (2022) Tea polyphenol/glycerol-treated double-network hydrogel with enhanced mechanical stability and anti-drying, antioxidant and antibacterial properties for accelerating wound healing. Int J Biol Macromol 208:530–543. https://doi.org/10.1016/j.ijbiomac.2022.03.128

    Article  CAS  Google Scholar 

  6. Yu X, Cheng C, Peng X, Zhang K, Yu X (2022) A self-healing and injectable oxidized quaternized guar gum/carboxymethyl chitosan hydrogel with efficient hemostatic and antibacterial properties for wound dressing. Colloids Surf B Biointerfaces 209:112207. https://doi.org/10.1016/j.colsurfb.2021.112207

    Article  CAS  Google Scholar 

  7. Guo Y, An X, Fan Z (2021) Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J Mech Behav Biomed 118:104452. https://doi.org/10.1016/j.jmbbm.2021.104452

    Article  CAS  Google Scholar 

  8. Ren Y, Zhang D, He Y, Chang R, Guo S, Ma S, Yao M, Guan F (2021) Injectable and antioxidative HT/QGA hydrogel for potential application in wound healing. Gels 7:204. https://doi.org/10.3390/gels7040204

    Article  CAS  Google Scholar 

  9. Su J, Li J, Liang J, Zhang K, Li J (2021) Hydrogel preparation methods and biomaterials for wound dressing. Life 11:1016. https://doi.org/10.3390/life11101016

    Article  CAS  Google Scholar 

  10. Zhu J, Jiang G, Hong W, Zhang Y, Xu B, Song G, Liu T, Hong C, Ruan L (2020) Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci Eng C 117:111273. https://doi.org/10.1016/j.msec.2020.111273

    Article  CAS  Google Scholar 

  11. Ouyang J, Bu Q, Tao N, Chen M, Liu H, Zhou J, Liu J, Deng B, Kong N, Zhang X, Chen T, Cao Y, Tao W (2022) A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioactive Materials 18:446–458. https://doi.org/10.1016/j.bioactmat.2022.03.033

    Article  CAS  Google Scholar 

  12. Wang Y, Lv Q, Chen Y, Xu L, Feng M, Xiong Z, Li J, Ren J, Liu J, Liu B (2022) Bilayer hydrogel dressing with lysozyme-enhanced photothermal therapy for biofilm eradication and accelerated chronic wound repair. Acta Pharm Sin B 13:284–297. https://doi.org/10.1016/j.apsb.2022.03.024

    Article  CAS  Google Scholar 

  13. Zhu S, Dai Q, Yao L, Wang Z, He Z, Li M, Wang H, Li Q, Gao H, Cao X (2022) Engineered multifunctional nanocomposite hydrogel dressing to promote vascularization and anti-inflammation by sustained releasing of Mg2+ for diabetic wounds. Compos Part B Eng 231:109569. https://doi.org/10.1016/j.compositesb.2021.109569

    Article  CAS  Google Scholar 

  14. Li X, Yang X, Wang Z, Liu Y, Guo J, Zhu Y, Shao J, Li J, Wang L, Wang K (2022) Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surfaces B Biointerfaces 209:112175. https://doi.org/10.1016/j.colsurfb.2021.112175

    Article  CAS  Google Scholar 

  15. Zaitun Hasibuan PA, Yuandani MT, Gea S, Pasaribu KM, Harahap M, Perangin-Angin YA, Prayoga A, Ginting JG (2021) Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: a potential wound dressing material. Heliyon 7:e8197. https://doi.org/10.1016/j.heliyon.2021.e08197

    Article  CAS  Google Scholar 

  16. Lamei E, Hasanzadeh M (2022) Fabrication of chitosan nanofibrous scaffolds based on tannic acid and metal-organic frameworks for hemostatic wound dressing applications. Int J Biol Macromol 208:409–420. https://doi.org/10.1016/j.ijbiomac.2022.03.117

    Article  CAS  Google Scholar 

  17. Sharaf SM, Al-Mofty SE, El-Sayed EM, Omar A, Abo Dena AS, El-Sherbiny IM (2021) Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. Int J Biol Macromol 193:2029–2037. https://doi.org/10.1016/j.ijbiomac.2021.11.034

    Article  CAS  Google Scholar 

  18. Suneetha M, Rao KM, Han SS (2022) Cell/tissue adhesive, self-healable, biocompatible, hemostasis, and antibacterial hydrogel dressings for wound healing applications. Adv Mater Interfaces 9:2102369. https://doi.org/10.1002/admi.202102369

    Article  CAS  Google Scholar 

  19. Zhu L, Chen J, Mao X, Tang S (2021) A γ-PGA/KGM-based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. Materials Sci Eng C 129:112374. https://doi.org/10.1016/j.msec.2021.112374

    Article  CAS  Google Scholar 

  20. Liu S, Li L (2016) Recoverable and self-healing double network hydrogel based on κ-carrageenan. Acs Appl Mater Interfaces 8:29749–29758. https://doi.org/10.1021/acsami.6b11363

    Article  CAS  Google Scholar 

  21. He Y, Li Y, Sun Y, Zhao S, Feng M, Xu G, Zhu H, Ji P, Mao H, He Y, Gu Z (2021) A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohyd Polym 261:117870. https://doi.org/10.1016/j.carbpol.2021.117870

    Article  CAS  Google Scholar 

  22. Li Y, Wang H, Niu Y, Ma S, Xue Z, Song A, Zhang S, Xu W, Ren C (2019) Fabrication of CS/SA double-network hydrogel and application in pH-controllable drug release. ChemistrySelect 4:14036–14042. https://doi.org/10.1002/slct.201904325

    Article  CAS  Google Scholar 

  23. Shi C, Yang F, Hu L, Wang H, Wang Y, Wang Z, Pan S, Chen J (2022) Construction of polysaccharide based physically crosslinked double-network antibacterial hydrogel. Mater Lett 316:132048. https://doi.org/10.1016/j.matlet.2022.132048

    Article  CAS  Google Scholar 

  24. Wang P, Wu M, Li R, Cai Z, Zhang H (2021) Fabrication of a double-network hydrogel based on carboxymethylated curdlan/polyacrylamide with highly mechanical performance for cartilage repair. ACS Appl Polymer Materials 3:5857–5869. https://doi.org/10.1021/acsapm.1c01094

    Article  CAS  Google Scholar 

  25. Pang Q, Wu K, Jiang Z, Shi Z, Si Z, Wang Q, Cao Y, Hou R, Zhu Y (2022) A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing. Macromol Biosci 22:2100386. https://doi.org/10.1002/mabi.202100386

    Article  CAS  Google Scholar 

  26. Ma W, Dong W, Zhao S, Du T, Wang Y, Yao J, Liu Z, Sun D, Zhang M (2022) An injectable adhesive antibacterial hydrogel wound dressing for infected skin wounds. Biomaterials Adv 134:112584. https://doi.org/10.1016/j.msec.2021.112584

    Article  CAS  Google Scholar 

  27. Liu J, Miao J, Zhao L, Liu Z, Leng K, Xie W, Yu Y (2022) Versatile bilayer hydrogel for wound dressing through PET-RAFT polymerization. Biomacromol 23:1112–1123. https://doi.org/10.1021/acs.biomac.1c01428

    Article  CAS  Google Scholar 

  28. Hanif W, Hardiansyah A, Randy A, Asri L (2021) Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. Rsc Adv 11:29029–29041. https://doi.org/10.1039/d1ra04992e

    Article  CAS  Google Scholar 

  29. Qing X, He G, Liu Z, Yin Y, Cai W, Fan L, Fardim P (2021) Preparation and properties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing. Carbohyd Polym 261:117875. https://doi.org/10.1016/j.carbpol.2021.117875

    Article  CAS  Google Scholar 

  30. Han K, Bai Q, Zeng Q, Sun N, Zheng C, Wu W, Zhang Y, Lu T (2022) A multifunctional mussel-inspired hydrogel with antioxidant, electrical conductivity and photothermal activity loaded with mupirocin for burn healing. Mater Design 217:110598. https://doi.org/10.1016/j.matdes.2022.110598

    Article  CAS  Google Scholar 

  31. Wei Q, Chen K, Zhang X, Ma G, Zhang W, Hu Z (2022) Facile preparation of polysaccharides-based adhesive hydrogel with antibacterial and antioxidant properties for promoting wound healing. Colloids Surfaces B Biointerfaces 209:112208. https://doi.org/10.1016/j.colsurfb.2021.112208

    Article  CAS  Google Scholar 

  32. Yang X, Wang B, Sha D, Liu Y, Xu J, Shi K, Yu C, Ji X (2021) Injectable and antibacterial ε-poly(l-lysine)-modified poly(vinyl alcohol)/chitosan/AgNPs hydrogels as wound healing dressings. Polymer 212:123155. https://doi.org/10.1016/j.polymer.2020.123155

    Article  CAS  Google Scholar 

  33. Rao KM, Suneetha M, Zo S, Won SY, Kim HJ, Han SS (2022) Injectable nanocomposite hydrogel as wound dressing agent with tunable multifunctional property. Mater Lett 307:131062. https://doi.org/10.1016/j.matlet.2021.131062

    Article  CAS  Google Scholar 

  34. Yu R, Yang Y, He J, Li M, Guo B (2021) Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem Eng J 417:128278. https://doi.org/10.1016/j.cej.2020.128278

    Article  CAS  Google Scholar 

  35. Nishio F, Hirata I, Nakamae K, Tsuga K, Kato K (2021) Mucoadhesion of polyamphoteric hydrogels synthesized from acrylic acid and N N-dimethylaminopropyl acrylamide. Int J Adhes Adhes 104:102746. https://doi.org/10.1016/j.ijadhadh.2020.102746

    Article  CAS  Google Scholar 

  36. Yu J, Qin Y, Yang Y, Zhao X, Zhang Z, Zhang Q, Su Y, Zhang Y, Cheng Y (2023) Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioactive Materials 19:703–716. https://doi.org/10.1016/j.bioactmat.2022.05.010

    Article  CAS  Google Scholar 

  37. Zhang X, Miao F, Niu L, Wei Y, Hu Y, Lian X, Zhao L, Chen W, Huang D (2021) Berberine carried gelatin/sodium alginate hydrogels with antibacterial and EDTA-induced detachment performances. Int J Biol Macromol 181:1039–1046. https://doi.org/10.1016/j.ijbiomac.2021.04.114

    Article  CAS  Google Scholar 

  38. Liu X, Liu Y, Du J, Li X, Yu J, Ding B (2021) Breathable, stretchable and adhesive nanofibrous hydrogels as wound dressing materials. Eng Regen 2:63–69. https://doi.org/10.1016/j.engreg.2021.05.001

    Article  Google Scholar 

  39. Zandraa O, Ngwabebhoh FA, Patwa R, Nguyen HT, Motiei M, Saha N, Saha T, Saha P (2021) Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: physico-chemistry and antimicrobial activity. Int J Pharmaceut 607:120952. https://doi.org/10.1016/j.ijpharm.2021.120952

    Article  CAS  Google Scholar 

  40. Wang Y, Liu S, Wang Q, Ji X, An X, Liu H, Ni Y (2022) Nanolignin filled conductive hydrogel with improved mechanical, anti-freezing, UV-shielding and transparent properties for strain sensing application. Int J Biol Macromol 205:442–451. https://doi.org/10.1016/j.ijbiomac.2022.02.088

    Article  CAS  Google Scholar 

  41. Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A (2022) Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: advances toward designing the ideal flexible/wearable nanoprobes. Adv Colloid Interfac 305:102705. https://doi.org/10.1016/j.cis.2022.102705

    Article  CAS  Google Scholar 

  42. Zhang Y, Jiang M, Zhang Y, Cao Q, Wang X, Han Y, Sun G, Li Y, Zhou J (2019) Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Materials Sci Eng C 104:110002. https://doi.org/10.1016/j.msec.2019.110002

    Article  CAS  Google Scholar 

  43. Bialik-Wąs K, Pluta K, Malina D, Barczewski M, Malarz K, Mrozek-Wilczkiewicz A (2021) Advanced SA/PVA-based hydrogel matrices with prolonged release of Aloe vera as promising wound dressings. Materials Sci Eng C 120:111667. https://doi.org/10.1016/j.msec.2020.111667

    Article  CAS  Google Scholar 

  44. Campelo MDS, Mota LB, Câmara Neto JF, Barbosa MLL, Gonzaga MLDC, Leal LKAM, Bastos MDSR, Soares SDA, Ricardo NMPS, Cerqueira GS, Ribeiro MENP (2022) Agaricus blazei Murill extract-loaded in alginate/poly(vinyl alcohol) films prepared by Ca2+ cross-linking for wound healing applications. J Biomed Materials Res Part B Appl Biomater. https://doi.org/10.1002/jbm.b.35212

    Article  Google Scholar 

  45. Zhao Y, Zhang K, Zeng J, Yin H, Zheng W, Li R, Ding A, Chen S, Liu Y, Wu W, Jing Z (2022) Immobilization on magnetic PVA/SA@Fe3O4 hydrogel beads enhances the activity and stability of neutral protease. Enzyme Microb Tech 157:110017. https://doi.org/10.1016/j.enzmictec.2022.110017

    Article  CAS  Google Scholar 

  46. Wu X, Zhang Q, Wang Z, Xu Y, Tao Q, Wang J, Kong X, Sheng K, Wang Y (2022) Investigation of construction and characterization of carboxymethyl chitosan - sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. Int J Biol Macromol 209:1837–1847. https://doi.org/10.1016/j.ijbiomac.2022.04.157

    Article  CAS  Google Scholar 

  47. Jiang S, Shang L, Liang H, Li B, Li J (2022) Preparation of konjac glucomannan/xanthan gum/sodium alginate composite gel by freezing combining moisture regulation. Food Hydrocolloid 127:107499. https://doi.org/10.1016/j.foodhyd.2022.107499

    Article  CAS  Google Scholar 

  48. Jing H, Huang X, Du X, Mo L, Ma C, Wang H (2022) Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohyd Polym 278:118993. https://doi.org/10.1016/j.carbpol.2021.118993

    Article  CAS  Google Scholar 

  49. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A (2016) Antibacterial and anti-inflammatory pH-Responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. Acs Appl Mater Inter 8:28511–28521. https://doi.org/10.1021/acsami.6b10491

    Article  CAS  Google Scholar 

  50. Cao S, Xu G, Li Q, Zhang S, Yang Y, Chen J (2022) Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Compos Part B Eng 234:109746. https://doi.org/10.1016/j.compositesb.2022.109746

    Article  CAS  Google Scholar 

  51. Gwak MA, Hong BM, Seok JM, Park SA, Park WH (2021) Effect of tannic acid on the mechanical and adhesive properties of catechol-modified hyaluronic acid hydrogels. Int J Biol Macromol 191:699–705. https://doi.org/10.1016/j.ijbiomac.2021.09.123

    Article  CAS  Google Scholar 

  52. Zhou Z, Xiao J, Guan S, Geng Z, Zhao R, Gao B (2022) A hydrogen-bonded antibacterial curdlan-tannic acid hydrogel with an antioxidant and hemostatic function for wound healing. Carbohyd Polym 285:119235. https://doi.org/10.1016/j.carbpol.2022.119235

    Article  CAS  Google Scholar 

  53. Jing J, Liang S, Yan Y, Tian X, Li X (2019) Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. Acs Biomater Sci Eng 5:4601–4611. https://doi.org/10.1021/acsbiomaterials.9b00604

    Article  CAS  Google Scholar 

  54. Wang C, Shen Z, Hu P, Wang T, Zhang X, Liang L, Bai J, Qiu L, Lai X, Yang X, Zhang K (2022) Facile fabrication and characterization of high-performance Borax-PVA hydrogel. J Sol-Gel Sci Techn 101:103–113. https://doi.org/10.1007/s10971-021-05584-0

    Article  CAS  Google Scholar 

  55. Si C, Tian X, Wang Y, Wang Z, Wang X, Lv D, Wang A, Wang F, Geng L, Zhao J, Hu R, Zhu Q (2022) A polyvinyl alcohol-tannic acid gel with exceptional mechanical properties and ultraviolet resistance. Gels 8:751. https://doi.org/10.3390/gels8110751

    Article  CAS  Google Scholar 

  56. Chen Y, Jiao C, Zhao Y, Zhang J, Wang H (2018) Self-assembled polyvinyl alcohol-tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3:11788–11795. https://doi.org/10.1021/acsomega.8b02041

    Article  CAS  Google Scholar 

  57. Demeter M, Scărișoreanu A, Călina I (2023) State of the art of hydrogel wound dressings developed by ionizing radiation. Gels 9:55. https://doi.org/10.3390/gels9010055

    Article  CAS  Google Scholar 

  58. Huang J, Wu C, Yu X, Li H, Ding S, Zhang W (2021) Biocompatible autonomic self-healing PVA-TA hydrogel with high mechanical strength. Macromol Chem Phys 222:2100061. https://doi.org/10.1002/macp.202100061

    Article  CAS  Google Scholar 

  59. Hong KH (2017) Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polym Bull 74:2861–2872. https://doi.org/10.1007/s00289-016-1868-z

    Article  CAS  Google Scholar 

  60. Cheng Y, Hu Y, Xu M, Qin M, Lan W, Huang D, Wei Y, Chen W (2020) High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. J Biomaterials Sci 31:1836–1851. https://doi.org/10.1080/09205063.2020.1782023

    Article  CAS  Google Scholar 

  61. Ari B, Sahiner M, Demirci S, Sahiner N (2022) Poly(vinyl alcohol)-tannic acid cryogel matrix as antioxidant and antibacterial material. Polymers-Basel 14:70. https://doi.org/10.3390/polym14010070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Foundation and Applied Foundation Research Fund of Guangdong Province (No. 2019A1515110568), Natural Science Foundation of Guangdong Province (No. 2020A1515011004, 2020A0505100050), Program of Science and Technology Department of Guangdong, China (No. 2016A010103024), and Basic Research and Transformation Technology Innovation Base of Bone and Joint Degenerative Diseases, Department of Education of Guangdong Province (2021ZDZX2014), Nanning Local Scientific Research and Technology Development Plan Project (20213122).

Author information

Authors and Affiliations

Authors

Contributions

ML: Writing- Original draft preparation and investigation, YZ: Data curation, YP and JP: Investigation, QY: Investigation, SZ: Data curation, HZ and YH: Writing-review, WZ: Molecular simulation and Writing-review, WZ: Supervision, YW: Supervision, XD: Writing- Reviewing & Editing, Supervision.

Corresponding authors

Correspondence to Wenxu Zheng, Wuyi Zhou or Xianming Dong.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical standard

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Zhao, Y., Pan, Y. et al. A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings. J Mater Sci 58, 5756–5772 (2023). https://doi.org/10.1007/s10853-023-08378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08378-7

Navigation