Skip to main content
Log in

Carbon quantum dots and cucurbituril joining hands to achieve luminescence and self-healing performance in a hydrogel

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of multifunctional hydrogels remains a grand challenge in material science, biomedicine, and other high-tech fields. Herein, we report a new method to use cucurbit[7] (CB[7]) as a cross-linking agent with biocompatible agarose (AG) and polyvinyl alcohol (PVA) forming an interpenetrating network structure by hydrogen bond way, and then doping the low-toxic carbon quantum dots (CQDs) into the hydrogel obtain multifunctional hydrogels (CQDs/PVA/AG/CB[7]). Due to a large number of hydrogen bonds and a few microcrystalline regions, the hydrogel exhibits excellent mechanical properties, and the CQDs also improve the elastic modulus of the hydrogels by 78%. CB[7] as the mobile phase makes the hydrogel a self-healing ability. The CQDs doped into the hydrogel not only solve their aggregation but also make the hydrogel be stronger fluorescence than that of CQDs. This work provides a well-guided approach for rationally designing and developing other multifunctional hydrogels.

Graphical abstract

Luminescent and self-healing hydrogels with low toxicity and excellent mechanical properties are significant for drug delivery, biological imaging, and biosensor. Carbon quantum dots and cucurbituril joining hands to construct multifunctional luminescence hydrogels are reported to achieve excellent biocompatibility, outstanding self-healing, and mechanical properties. This work offers a new way to design biomedical engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cao CY, Li YM (2020) Highly stretchable calcium ion/polyacrylic acid hydrogel prepared by freezing–thawing. J Mater Sci 55:5340–5348. https://doi.org/10.1007/s10853-019-04332-8

    Article  CAS  Google Scholar 

  2. Li B, Song ZH, Zhu KY, Niu QY, Li ZQ, Li HR (2021) Multistimuli-responsive lanthanide-containing smart luminescent hydrogel actuator. ACS Appl Mater Interfaces 13:20633–20640. https://doi.org/10.1021/acsami.1c02589

    Article  CAS  Google Scholar 

  3. Tang ZB, Du F, Zhao L, Liu H, Leng ZH, Xie HD, Zhang GY, Wang YH (2023) Single-site occupancy of Eu2+ in multiple cations enables efficient ultra-broadband visible to near-infrared luminescence. Laser Photonics Rev. https://doi.org/10.1002/lpor.202200911

  4. Xu GL, Gong YD, Miao C, Wang Q, Nie SQ, Xin Y, Wen MY, Liu J, Xiao W (2022) Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries. Rare Met 41:3421–3431. https://doi.org/10.1007/s12598-022-02073-3

    Article  CAS  Google Scholar 

  5. Subham B, Santanu B (2014) Phthalate mediated hydrogelation of a pyrene based system: a novel scaffold for shape-persistent, self-healing luminescent soft material. J Mater Chem A 2:17889–17898. https://doi.org/10.1039/c4ta03452j

    Article  CAS  Google Scholar 

  6. Zhang CQ, Liu C, Xue XD, Zhang X, Huo SD, Jiang YG, Chen WQ, Zou GZ et al (2014) Salt-responsive self-assembly of luminescent hydrogel with intrinsic gelation-enhanced emission. ACS Appl Mater Inter 6:757–762. https://doi.org/10.1021/am4049354

    Article  CAS  Google Scholar 

  7. Li PX, Guan GZ, Shi X, Lu L, Fan YC, Xu J, Shang YY, Zhang YJ, Wei JQ, Guo FM (2023) Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. https://doi.org/10.1007/s12598-022-02189-6

  8. Liu P, Liu JN, Zhang BB, Zong WS, Xu SG, Liu YL, Cao SK (2019) Enhanced electroluminescent performance by doping organic conjugated ionic compound into graphene oxide hole-injecting layer. J Mater Sci 54:12688–12697. https://doi.org/10.1007/s10853-019-03820-1

    Article  CAS  Google Scholar 

  9. Liu H, Lei Q, Miao RY, Sun MZ, Qin CJ, Zhang L, Ye G, Yao Y, Huang BL, Ma ZH (2022) Asymmetric coordination of single-atom co sites achieves efficient dehydrogenation catalysis. Adv Funct Mater 43:2207408. https://doi.org/10.1002/adfm.202207408

    Article  CAS  Google Scholar 

  10. Chen YL, Liu QS, Du XY, Zhang B, Yan WJ, Wang YQ, Lu C, Shen AF, Zhang HH, Sun BY (2017) The structure refinement and fluorescent quenching mechanism of Sr3−xB2SiO8:xEu3+ phosphor. J Mater Sci 52:1156–1164. https://doi.org/10.1007/s10853-016-0411-9

    Article  CAS  Google Scholar 

  11. Zhang Q, Wang RY, Feng BW, Zhong XX, Ostrikov K (2021) Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat Commun 12:1–13. https://doi.org/10.1038/s41467-021-27071-4

    Article  CAS  Google Scholar 

  12. Wang GL, Zhang WQ, Li JY, Dong XL, Zhang XF (2019) Carbon quantum dots decorated BiVO4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. J Mater Sci 54:6488–6499. https://doi.org/10.1007/s10853-019-03316-y

    Article  CAS  Google Scholar 

  13. Li SH, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao XC (2020) Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat Biomed Eng 4:704–716. https://doi.org/10.1038/s41551-020-0540-y

    Article  CAS  Google Scholar 

  14. Li CY, Zheng SY, Du C, Ling J, Zhu CN, Wang YJ, Wu ZL, Zheng Q (2020) Carbon Dot/Poly(methylacrylic acid) nanocomposite hydrogels with high toughness and strong fluorescence. ACS Appl Polym Mater 2:1043–1052. https://doi.org/10.1021/acsapm.9b00971

    Article  CAS  Google Scholar 

  15. Yuan FL, Yuan T, Sui LZ, Wang ZB, Xi ZF, Li YC, Li XH, Fan LZ et al (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 08:1–11. https://doi.org/10.1038/s41467-018-04635-5

    Article  CAS  Google Scholar 

  16. Li PL, Yang X, Zhang XH, Pan JL, Tang WT, Cao WW, Zhou JW, Gong XD, Xing XD (2020) Surface chemistry-dependent antibacterial and antibiofilm activities of polyamine-functionalized carbon quantum dots. J Mater Sci 55:16744–16757. https://doi.org/10.1007/s10853-020-05262-6

    Article  CAS  Google Scholar 

  17. Geng BJ, Li P, Fang FL, Shi WY, Glowacki J, Pan DY, Shen LX (2021) Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. Carbon 184:375–385. https://doi.org/10.1016/j.carbon.2021.08.040

    Article  CAS  Google Scholar 

  18. Alas MO, Alkas FB, Sukuroglu AA, Alturk RC, Battal D (2020) Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. J Mater Sci 55:15074–15105. https://doi.org/10.1007/s10853-020-05054-y

    Article  CAS  Google Scholar 

  19. Kou XL, Jiang SC, Par SJ, Meng LY (2020) A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton T 49:6915–6938. https://doi.org/10.1039/d0dt01004a

    Article  CAS  Google Scholar 

  20. Yang XX, Hou SY, Chu TT, Han JZ, Li RS, Guo YZ, Gong YM, Li HM et al (2021) Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response. Ind Crop Prod 167:1–8. https://doi.org/10.1016/j.indcrop.2021.113507

    Article  CAS  Google Scholar 

  21. Panda S, ChawPattnayak B, Dash P, Nayak B, Mohapatra S (2022) Papaya-derived carbon-dot-loaded fluorescent hydrogel for NIR-stimulated photochemotherapy and antibacterial activity. ACS Appl Polym Mater 4:369–380. https://doi.org/10.1021/acsapm.1c01317

    Article  CAS  Google Scholar 

  22. Jaehyun H, Kyuhyun I, Won KS, Jineun K, Chung DY, Kim TH, Jo KH, Hahn JH, Bao ZN, Sungwoo H, Nokyoung P (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8:10066–10076. https://doi.org/10.1021/nn502704g

    Article  CAS  Google Scholar 

  23. Qiao LZ, Zhao LS, Chao L, Du KF (2019) The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. J Mater Chem B 7:5510–5519. https://doi.org/10.1039/c9tb01157a

    Article  CAS  Google Scholar 

  24. Faith BA, Matsukawa DS (2020) Change of network structure in agarose gels by aging during storage studied by NMR and electrophoresis. Carbohyd Polym 245:1–29. https://doi.org/10.1016/j.carbpol.2020.116497

    Article  CAS  Google Scholar 

  25. Lin TR, Bai QW, Peng J, Xu L, Li JQ, Zhai ML (2018) One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties. Carbohyd Polym 200:1–19. https://doi.org/10.1016/j.carbpol.2018.07.070

    Article  CAS  Google Scholar 

  26. Alazne O, Neeru M, Erlandz L, Markus N (2021) Stable Na electrodeposition enabled by agarose-based water-soluble sodium ion battery separators. ACS Appl Mater Interfaces 13:21250–21260. https://doi.org/10.1021/acsami.1c02135

    Article  CAS  Google Scholar 

  27. Eivazzadeh KR, Aliabadi HAM, Radinekiyan F, Sobhani M, Khalili F, Maleki A, Madanchi H, Mahdavi M et al (2021) Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv 11:17914–17923. https://doi.org/10.1039/d1ra01300a

    Article  CAS  Google Scholar 

  28. Gogo N, Barooah M, Majumdar G, Chowdhury D (2015) Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl Mater Interfaces 7:3058–3067. https://doi.org/10.1021/am506558d

    Article  CAS  Google Scholar 

  29. Wang KP, Yang Y, Zhang Q, Xiao ZY, Zong LB, Ichitsubo T, Wang L (2021) Construction of supramolecular polymer hydrogel electrolyte with ionic channels for flexible supercapacitors. Mater Chem Front 5:5106–5114. https://doi.org/10.1039/d1qm00396h

    Article  CAS  Google Scholar 

  30. Deng HL, Yu ZP, Chen SG, Fei LT, Sha QY, Zhou N, Chen ZT, Xu C (2020) Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection. Carbohyd Polym 230:1–38. https://doi.org/10.1016/j.carbpol.2019.115565

    Article  CAS  Google Scholar 

  31. Yan TT, Zou YH, Zhang XH, Li DH, Guo XX, Yang DJ (2021) Hydrogen bond interpenetrated agarose/PVA network: a highly ionic conductive and flame-retardant gel polymer electrolyte. ACS Appl Mater Interfaces 13:9856–9864. https://doi.org/10.1021/acsami.0c20702

    Article  CAS  Google Scholar 

  32. Cao L, Li N (2021) Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth. Int J Biol Macromol 177:383–391. https://doi.org/10.1016/j.ijbiomac.2021.02.097

    Article  CAS  Google Scholar 

  33. Pandit S, Mondal S, De M (2021) Surface engineered amphiphilic carbon dots: solvatochromic behavior and applicability as a molecular probe. J Mater Chem B 9:1432–1440. https://doi.org/10.1039/d0tb02007a

    Article  CAS  Google Scholar 

  34. Li JM, Li H, Wu CW, Zhang W (2022) PVA-AAm-AG multi-network hydrogel with high mechanical strength and cell adhesion. Polymer 247:1–6. https://doi.org/10.1016/j.polymer.2022.124786

    Article  CAS  Google Scholar 

  35. Hu M, Gu XY, Hu Y, Deng YH, Wang CY (2016) PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity. Macromol Mater Eng 301:1352–1362. https://doi.org/10.1002/mame.201600248

    Article  CAS  Google Scholar 

  36. Aziz SB, Hassan AQ, Mohammed SJ, Karim WO, Kadir MFZ, Tajuddin HA, Chan NNMY (2019) Structural and optical characteristics of PVA:C-dot composites: tuning the absorption of ultra violet (UV) Region. Nanomaterials 9:1–20. https://doi.org/10.3390/nano9020216

    Article  CAS  Google Scholar 

  37. Amato F, Soares MCP, Cabral TD, Fujiwara E, Cordeiro CMB, Criado A, Prato M, Bartoli JR (2021) Agarose-based fluorescent waveguide with embedded silica nanoparticle-carbon nanodot hybrids for pH sensing. ACS Appl Nano Mater 4:9738–9751. https://doi.org/10.1021/acsanm.1c02127

    Article  CAS  Google Scholar 

  38. Bai RR, Zhu HZ, Xie DU, Zhua ZH, Zhong Q, Chen J, Zhao H, Liu DY (2019) Microwave loss percolation effect and microwave self-healing function of FeNip/PP nanocomposites. Compos Sci Technol 182:1–7. https://doi.org/10.1016/j.compscitech.2019.107745

    Article  CAS  Google Scholar 

  39. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP et al (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49:2281–2287. https://doi.org/10.1021/acs.macromol.6b00156

    Article  CAS  Google Scholar 

  40. Miao RY, Liu H, Lei Q, Zhong L, Zhang L, He J, Ma Z, Yao Y (2022) Single-organic component g-C3.6N4 achieves superior photoactivity antibacterial. Chem Eng J 440:135873. https://doi.org/10.1016/j.cej.2022.135873

    Article  CAS  Google Scholar 

  41. Liu H, Shen M, Zhou P, Guo Z, Liu X, Yang W, Gao M, Chen M et al (2021) Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale 13:9315–9321. https://doi.org/10.1039/d1nr01940f

    Article  CAS  Google Scholar 

  42. Guo X, Li MG, Qiu LY, Tian FY, He L, Geng S, Liu YQ, Song Y, Yang WW (2023) Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting. Chem Eng J 453:139796. https://doi.org/10.1016/j.cej.2022.139796

    Article  CAS  Google Scholar 

  43. Gao MY, Tian FY, Zhang X, Liu YQ, Chen ZY, Yu YS, Yang WW, Hou YL (2022) Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface Schottky junctions and interlayer charge transfer channels. Nano Energy 103:107767. https://doi.org/10.1016/j.nanoen.2022.107767

    Article  CAS  Google Scholar 

  44. Liu H, Huang B, Zhou J, Wang K, Yu Y, Yang W, Guo SJ (2018) Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J Mater Chem A 6:1979–1984. https://doi.org/10.1039/c8ta06513f

    Article  CAS  Google Scholar 

  45. Green DC, Holden MA, Levenstein MA, Zhang SH, Johnson BRG, Pablo JG, Ward A, Botchway SW et al (2019) Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-018-08214-6

    Article  CAS  Google Scholar 

  46. Serpell CJ, Rutte RN, Geraki K, Pach E, Martincic M, Kierkowicz M, Munari SD, Wals K et al (2016) Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13118

    Article  CAS  Google Scholar 

  47. Wu FY, Ren X, Tian FY, Han GH, Sheng J, Yu YS, Liu YQ, Yang WW (2022) O and N co-doped porous carbon derived from crop waste for a high-stability all-solid-state symmetric supercapacitor. New J Chem 103:107767. https://doi.org/10.1039/d2nj04125a

    Article  CAS  Google Scholar 

  48. Zhang X, Zhu CX, Qiu LY, Gao MY, Tian FY, Liu YQ, Yang WW, Yu YS (2022) Concentrating photoelectrons on sulfur sites of ZnxCd1-xS to active H-OH bond of absorbed water boosts photocatalytic hydrogen generation. Surf Interfaces 34:102312. https://doi.org/10.1016/j.surfin.2022.102312

    Article  CAS  Google Scholar 

  49. Liu H, Li X, Liu X, Ma Z, Yin Z, Yang W, Yu Y (2021) Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Metals 40:808–816. https://doi.org/10.1007/s12598-020-01637-5

    Article  CAS  Google Scholar 

  50. Gao MY, Tian FY, Guo Z, Zhang X, Li ZJ, Zhou J, Zhou X, Yu YS, Yang WW (2022) Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem Eng J 446:137127. https://doi.org/10.1016/j.cej.2022.137127

    Article  CAS  Google Scholar 

  51. Xing WN, Ma F, Li ZJ, Wang A, Liu MX, Han JG, Wu GY, Tu WG (2022) Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity. J Mater Chem A 10:18333–18342. https://doi.org/10.1039/D2TA04930A

    Article  CAS  Google Scholar 

  52. Liu H, Jia RR, Qin CJ, Yang Q, Tang ZB, Li MG, Ma ZH (2022) Anti‐CO poisoning FePtRh nanoflowers with Rh‐rich core and Fe‐Rich shell boost methanol oxidation electrocatalysis. Adv Funct Mater 2210626. https://doi.org/10.1002/adfm.202210626

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Shaanxi Province, China. (Nos. 2023-JC-YB-478, 2019JM-541 and 2021JM-356) and National Natural Science Foundation of China (No. 52271189).

Author information

Authors and Affiliations

Authors

Contributions

QY and HL designed the study, DG and RM performed the research and wrote the paper. CQ analyzed the data. The remaining authors contributed to refining the ideas, carrying out additional analyses and finalizing this paper.

Corresponding author

Correspondence to Hu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests. The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1342 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Gao, D., Miao, R. et al. Carbon quantum dots and cucurbituril joining hands to achieve luminescence and self-healing performance in a hydrogel. J Mater Sci 58, 1739–1751 (2023). https://doi.org/10.1007/s10853-023-08151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08151-w

Navigation