Skip to main content

Advertisement

Log in

Preimplantation genetic testing for monogenic disorders (PGT-M) offers an alternative strategy to prevent children from being born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes: a retrospective study

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases.

Material and methods

In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers.

Results

A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi–Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families.

Conclusions

This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

PGT:

Preimplantation genetic testing

PGT-M:

PGT for monogenic disorders

PGT-A:

PGT for aneuploidy

ICSI:

Intracytoplasmic sperm injection

HND:

Hereditary neurological diseases

NGS:

Next‑generation sequencing

SNP:

Single nucleotide polymorphisms

PCR:

Polymerase chain reaction

HCG:

Human chorionic gonadotropin

WGA:

Whole genome amplification

XR:

X-chromosome recessive

XD:

X-chromosome dominant

AD:

Autosomal dominant

AR:

Autosomal recessive

BMI:

Body mass index

E2:

Estradiol

LH:

Luteinizing hormone

FSH:

Follicle-stimulating hormone

PRL:

Prolactin

T:

Testosterone

PR:

Progressive motility

DFI:

DNA fragmentation index

HDS:

High DNA stainability

Gn:

Gonadotropins

DMD:

Duchenne muscular dystrophy

SMA:

Spinal muscular atrophy

CMT:

Charcot-Marie-Tooth

ALS:

Amyotrophic lateral sclerosis

SCA:

Spinocerebellar ataxias

GCE1:

Glycine encephalopathy 1

ALD:

Adrenoleukodystrophy

MPS:

Mucopolysaccharidosis

INAD:

Infantile neuroaxonal dystrophy

PKU:

Phenylketonuria

MMA:

Methylmalonic acidemia

MNK:

Menkes disease

DRVT:

Dravet syndrome

CSA:

Cockayne syndrome, type A

AGS:

Aicardi–Goutieres syndrome

References

  1. Huang Y, Yu S, Wu Z, Tang B. Genetics of hereditary neurological disorders in children. Transl Pediatr. 2014;3(2):108–19.

    PubMed  PubMed Central  Google Scholar 

  2. Bergen DC. The world-wide burden of neurologic disease. Neurology. 1996;47(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer G, Horvath R, Klopstock T, Mootha VK, Suomalainen A, Koene S, Hirano M, Zeviani M, Bindoff LA, Yu-Wai-Man P, et al. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol. 2013;9(8):474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tur-Kaspa I, Jeelani R, Doraiswamy PM. Preimplantation genetic diagnosis for inherited neurological disorders. Nat Rev Neurol. 2014;10(7):417–24.

    Article  CAS  PubMed  Google Scholar 

  5. De Rycke M. Singling out genetic disorders and disease. Genome Med. 2010;2(10):74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang J, Boulet SL, Jeng G, Flowers L, Kissin DM. Outcomes of in vitro fertilization with preimplantation genetic diagnosis: an analysis of the United States Assisted Reproductive Technology Surveillance Data, 2011–2012. Fertil Steril. 2016;105(2):394–400.

    Article  PubMed  Google Scholar 

  7. Handyside AH, Kontogianni EH, Hardy K, Winston RM. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.

    Article  CAS  PubMed  Google Scholar 

  8. Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod. 1990;5(7):826–9.

    Article  CAS  PubMed  Google Scholar 

  9. Handyside AH. Preimplantation genetic diagnosis after 20 years. Reprod Biomed Online. 2010;21(3):280–2.

    Article  PubMed  Google Scholar 

  10. Harton G, Braude P, Lashwood A, Schmutzler A, Traeger-Synodinos J, Wilton L, Harper JC, European Society for Human R. Embryology PGDC: ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  11. Harper JC, Wilton L, Traeger-Synodinos J, Goossens V, Moutou C, SenGupta SB, Pehlivan Budak T, Renwick P, De Rycke M, Geraedts JP, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–47.

    Article  CAS  PubMed  Google Scholar 

  12. Harper JC, Sengupta SB. Preimplantation genetic diagnosis: state of the art 2011. Hum Genet. 2012;131(2):175–86.

    Article  PubMed  Google Scholar 

  13. Moutou C, Goossens V, Coonen E, De Rycke M, Kokkali G, Renwick P, SenGupta SB, Vesela K, Traeger-Synodinos J. ESHRE PGD Consortium data collection XII: cycles from January to December 2009 with pregnancy follow-up to October 2010. Hum Reprod. 2014;29(5):880–903.

    Article  CAS  PubMed  Google Scholar 

  14. De Rycke M, Belva F, Goossens V, Moutou C, SenGupta SB, Traeger-Synodinos J, Coonen E. ESHRE PGD Consortium data collection XIII: cycles from January to December 2010 with pregnancy follow-up to October 2011. Hum Reprod. 2015;30(8):1763–89.

    Article  PubMed  Google Scholar 

  15. De Rycke M, Goossens V, Kokkali G, Meijer-Hoogeveen M, Coonen E, Moutou C. ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013. Hum Reprod. 2017;32(10):1974–94.

    Article  PubMed  Google Scholar 

  16. Kristopher J. Abbate RKWKCROC-SLPSA: Views of preimplantation genetic diagnosis (PGD) among psychiatrists and neurologists. J Reprod Med. 2014;59:385–92.

    Google Scholar 

  17. de Boer KA, Catt JW, Jansen RP, Leigh D, McArthur S. Moving to blastocyst biopsy for preimplantation genetic diagnosis and single embryo transfer at Sydney IVF. Fertil Steril. 2004;82(2):295–8.

    Article  PubMed  Google Scholar 

  18. Chen L, Diao Z, Xu Z, Zhou J, Wang W, Li J, Yan G, Sun H. The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy. J Assist Reprod Genet. 2016;33(11):1459–66.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shen J, Cram DS, Wu W, Cai L, Yang X, Sun X, Cui Y, Liu J. Successful PGD for late infantile neuronal ceroid lipofuscinosis achieved by combined chromosome and TPP1 gene analysis. Reprod Biomed Online. 2013;27(2):176–83.

    Article  CAS  PubMed  Google Scholar 

  20. Parikh F, Athalye A, Madon P, Khandeparkar M, Naik D, Sanap R. Udumudi A. Genetic counseling for pre-implantation genetic testing of monogenic disorders (PGT-M). Front Reprod Health. 2023;5:1213546.

  21. Leahy D, Marin D, Xu J, Eccles J, Treff NR. High-resolution PGT-A results in incidental identification of patients with small pathogenic copy number variants. J Assisted Reprod Genet. 2024;41(1):121–6.

    Article  Google Scholar 

  22. Trachoo O, Satirapod C, Panthan B, Sukprasert M, Charoenyingwattana A, Chantratita W, Choktanasiri W, Hongeng S. First successful trial of preimplantation genetic diagnosis for pantothenate kinase-associated neurodegeneration. J Assist Reprod Genet. 2016;34(1):109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yan L, Huang L, Xu L, Huang J, Ma F, Zhu X, Tang Y, Liu M, Lian Y, Liu P, et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci. 2015;112(52):15964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dreesen JC, Jacobs LJ, Bras M, Herbergs J, Dumoulin JC, Geraedts JP, Evers JL, Smeets HJ. Multiplex PCR of polymorphic markers flanking the CFTR gene; a general approach for preimplantation genetic diagnosis of cystic fibrosis. Mol Hum Reprod. 2000;6(5):391–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ou J, Wang W, Feng T, Liao L, Meng Q, Zou Q, Ding J, Zheng A, Duan C, Li P, et al. Identification of small segmental translocations in patients with repeated implantation failure and recurrent miscarriage using next generation sequencing after in vitro fertilization/intracytoplasmic sperm injection. Mol Cytogenet. 2015;8:105.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93.

    Article  PubMed  Google Scholar 

  27. Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, Chawla A, Halpern AL, Taft RJ, BioResource N, et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet Med. 2020;22(5):945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, Cioni G, Damiano D, Darrah J, Eliasson AC, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897–907.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rudnik-Schoneborn S, Auer-Grumbach M, Senderek J. Charcot-Marie-Tooth disease and hereditary motor neuropathies - Update 2020. Med Genet-Berlin. 2020;32(3):207–19.

    Google Scholar 

  30. Perrone B, Conforti FL. Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn. 2020;20(7):703–14.

    Article  CAS  PubMed  Google Scholar 

  31. Sullivan R, Yau WY, O’Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019;266(2):533–44.

    Article  PubMed  Google Scholar 

  32. Applegarth DA, Toone JR. Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab. 2001;74(1–2):139–46.

    Article  CAS  PubMed  Google Scholar 

  33. Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD, Raymond GV, Cutting GR, Wanders RJ, Moser HW. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat. 2001;18(6):499–515.

    Article  CAS  PubMed  Google Scholar 

  34. Wood TC, Harvey K, Beck M, Burin MG, Chien YH, Church HJ, D’Almeida V, van Diggelen OP, Fietz M, Giugliani R, et al. Diagnosing mucopolysaccharidosis IVA. J Inherit Metab Dis. 2013;36(2):293–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iodice A, Spagnoli C, Salerno GG, Frattini D, Bertani G, Bergonzini P, Pisani F, Fusco C. Infantile neuroaxonal dystrophy and PLA2G6-associated neurodegeneration: an update for the diagnosis. Brain Dev. 2017;39(2):93–100.

    Article  PubMed  Google Scholar 

  36. Blau N, Shen N, Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev Mol Diagn. 2014;14(6):655–71.

    Article  CAS  PubMed  Google Scholar 

  37. Liu MY, Yang YL, Chang YC, Chiang SH, Lin SP, Han LS, Qi Y, Hsiao KJ, Liu TT. Mutation spectrum of MMACHC in Chinese patients with combined methylmalonic aciduria and homocystinuria. J Hum Genet. 2010;55(9):621–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, Liew CJ, Sato S, Patronas N. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358(6):605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52(Suppl 2):3–9.

    Article  PubMed  Google Scholar 

  40. Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134(5–6):161–70.

    Article  CAS  PubMed  Google Scholar 

  41. Aicardi J. Aicardi syndrome. Brain Dev. 2005;27(3):164–71.

    Article  PubMed  Google Scholar 

  42. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakam H, Nakamura S, Nishimura M, Akiguchi I, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed S, Atkin K, Hewison J, Green J. The influence of faith and religion and the role of religious and community leaders in prenatal decisions for sickle cell disorders and thalassaemia major. Prenat Diagn. 2006;26(9):801–9.

    Article  PubMed  Google Scholar 

  44. Traeger-Synodinos J. Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol. 2017;39:74–88.

    Article  PubMed  Google Scholar 

  45. Zhao M, Cheah FSH, Tan ASC, Lian M, Phang GP, Agarwal A, Chong SS. Robust preimplantation genetic testing of huntington disease by combined triplet-primed PCR analysis of the HTT CAG repeat and multi-microsatellite haplotyping. Sci Rep. 2019;9(1):16481.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu H, Pu J, Yang N, Wu Z, Han C, Yao J, Li X. First preimplantation genetic testing case of Meckel syndrome with a novel homozygous TXNDC15 variant in a non-consanguineous Chinese family. Mol Genet Genomic Med. 2023;12(1):e2340.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Listorti I, Manzo R, Arrivi C, Mencacci C, Biricik A, Greco E, Greco P. PGT-M, a useful tool to manage the Lynch syndrome transmission. Int J Mol Sci. 2023;24(22):16114.

  48. Xiao M, Shi H, Rao J, Xi Y, Zhang S, Wu J, Zhu S, Zhou J, Xu H, Lei C, et al. Combined preimplantation genetic testing for genetic kidney disease: genetic risk identification, assisted reproductive cycle, and pregnancy outcome analysis. Front Med (Lausanne). 2022;9:936578.

    Article  PubMed  Google Scholar 

  49. Pan J, Li J, Chen S, Xu C, Huang H, Jin L. Living birth following preimplantation genetic testing for monogenic disorders to prevent low-level germline mosaicism related Nicolaides-Baraitser syndrome. Front Genet. 2022;13:989041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mackay TFC, Anholt RRH. Gregor Mendel’s legacy in quantitative genetics. PLoS Biol. 2022;20(7):e3001692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the reproductive physicians, embryologists, and related staff involved in this study. The authors also thank all the patients who participated in this study.

Funding

This research was funded by the National Natural Science Foundation of China, grant number 82001635; the National Key R&D Program of China, grant number 2021YFC2700901; the Clinical Medical Research Transformation Project of Anhui Province, grant number 202204295107020012; the Foundation for Selected Scientists Studying Abroad of Anhui Province, grant number 2022LCX015; the Program for Outstanding Young Talents in University of Anhui, grant number gxyqZD2022027; and the Major Science and Technology Project of Anhui province, grant number 202003a07020012.

Author information

Authors and Affiliations

Authors

Contributions

WZ and ML were responsible for statistical analysis and writing the first draft; XW and HL were responsible for data collection and charting; WZ was mainly responsible for supervising the research, conception, and review of papers; WZ, PZ, and YC were responsible for the major revisions of the review; and YH, DC, SZ, DJ, and ZZ participated in the revision of this review. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Weiwei Zou, Ping Zhou or Yunxia Cao.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of Anhui Medical University (No.2017002). Since this study is retrospective, the ethics committee of Anhui Medical University waived written informed consent. All methods were carried out in strict accordance with the relevant guidelines and regulations.

Consent to participate

Informed consent was obtained from all the parents.

Consent for publication

No applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 11072 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, W., Li, M., Wang, X. et al. Preimplantation genetic testing for monogenic disorders (PGT-M) offers an alternative strategy to prevent children from being born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes: a retrospective study. J Assist Reprod Genet 41, 1245–1259 (2024). https://doi.org/10.1007/s10815-024-03057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03057-1

Keywords

Navigation