Skip to main content

Advertisement

Log in

Microarray evidence that 8-cell human embryos express some hormone family members including oxytocin

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

This study is to discover hormone pathways active in early cleaving human embryos.

Methods

A list of 152 hormones and receptors were compiled to query the microarray database of mRNAs in 8-cell human embryos, two lines of human embryonic stem cells plus human fibroblasts before and after induced pluripotency.

Results

Over half of the 152 hormones and receptors were silent on the arrays of all cell types, and more were detected at high or moderate levels on the 8-cell arrays than on the pluripotent cell or fibroblast arrays. Eight hormone family genes were uniquely detected at least 22-fold higher on the 8-cell arrays than the stem cell arrays: AVPI1, CCK, CORT, FSTL4, GIP, GPHA2, OXT, and PPY suggesting novel roles for these proteins in early development. Oxytocin was detected by pilot immunoassay in culture media collected from Day 3 embryos. Robust detection of CRHR1 and EPOR suggests the 8-cell embryo may be responsive to maternal CRH and EPO. The over-expression of POMC and GHITM suggests POMP peptide products may have undiscovered roles in early development and GHITM may contribute to mitochondrial remodeling. Under-detected on the 8-cell arrays at least tenfold were two key enzymes in steroid biosynthesis, DHCR24 and FDPS.

Conclusions

The 8-cell human embryo may be secreting oxytocin, which could stimulate its own progress down the fallopian tube as well as play a role in early neural precursor development. The 8-cell embryo does not synthesize reproductive steroid hormones. As previously reported for growth factor families, the early embryo over-expresses more hormones than hormone receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Evidence that human blastomere cleavage is under unique cell cycle control. J Assist Reprod Genet. 2009;26(4):187–95. https://doi.org/10.1007/s10815-009-9306-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J Assist Reprod Genet. 2010;27(6):265–76. https://doi.org/10.1007/s10815-010-9407-6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vlismas A, Bletsa R, Mavrogianni D, Mamali G, Pergamali M, Dinopoulou V, et al. Microarray analyses reveal marked differences in growth factor and receptor expression between 8-cell human embryos and pluripotent stem cells. Stem Cells Dev. 2016;25(2):160–77. https://doi.org/10.1089/scd.2015.0284.

    Article  PubMed  CAS  Google Scholar 

  4. Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41(Database issue):D1009–13. https://doi.org/10.1093/nar/gks1161.

  5. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms. 2001;16(4):283–301. https://doi.org/10.1177/074873001129001980.

    Article  PubMed  CAS  Google Scholar 

  6. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–7.

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Oka T, Sayano T, Tamai S, Yokota S, Kato H, Fujii G, et al. Identification of a novel protein MICS1 that is involved in maintenance of mitochondrial morphology and apoptotic release of cytochrome c. Mol Biol Cell. 2008;19(6):2597–608. https://doi.org/10.1091/mbc.E07-12-1205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nicod M, Michlig S, Flahaut M, Salinas M, Fowler Jaeger N, Horisberger JD, et al. A novel vasopressin-induced transcript promotes MAP kinase activation and ENaC downregulation. EMBO J. 2002;21(19):5109–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sofroniew M. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Prog Brain Res. 1983;60:101–14.

    Article  PubMed  CAS  Google Scholar 

  10. Palanisamy A, Kannappan R, Xu Z, Martino A, Friese MB, Boyd JD, et al. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro. PLoS ONE. 2018;13(1):e0191160. https://doi.org/10.1371/journal.pone.0191160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zatkova M, Reichova A, Bacova Z, Strbak V, Kiss A, Bakos J. Neurite outgrowth stimulated by oxytocin is modulated by inhibition of the calcium voltage-gated channels. Cell Mol Neurobiol. 2018;38(1):371–8. https://doi.org/10.1007/s10571-017-0503-3.

    Article  PubMed  CAS  Google Scholar 

  12. Clark AJ, Lowry P. 60 YEARS OF POMC: POMC: the consummate peptide hormone precursor. J Mol Endocrinol. 2016;56(4):E1-2. https://doi.org/10.1530/JME-16-0016.

    Article  PubMed  CAS  Google Scholar 

  13. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karteris E, Vatish M, Hillhouse EW, Grammatopoulos DK. Preeclampsia is associated with impaired regulation of the placental nitric oxide-cyclic guanosine monophosphate pathway by corticotropin-releasing hormone (CRH) and CRH-related peptides. J Clin Endocrinol Metab. 2005;90(6):3680–7. https://doi.org/10.1210/jc.2004-2210.

    Article  PubMed  CAS  Google Scholar 

  15. Ferone D, Boschetti M, Resmini E, Giusti M, Albanese V, Goglia U, et al. Neuroendocrine-immune interactions: the role of cortistatin/somatostatin system. Ann N Y Acad Sci. 2006;1069:129–44. https://doi.org/10.1196/annals.1351.011.

    Article  ADS  PubMed  CAS  Google Scholar 

  16. van Hagen PM, Dalm VA, Staal F, Hofland LJ. The role of cortistatin in the human immune system. Mol Cell Endocrinol. 2008;286(1–2):141–7. https://doi.org/10.1016/j.mce.2008.03.007.

    Article  PubMed  CAS  Google Scholar 

  17. Delgado M, Gonzalez-Rey E. Role of cortistatin in the stressed immune system. Front Horm Res. 2017;48:110–20. https://doi.org/10.1159/000452910.

    Article  PubMed  CAS  Google Scholar 

  18. Li D, He HL, Yao MZ, Chen ML, Chen X. Cortistatin is dysregulated in skin tissue of patients with psoriasis vulgaris and suppresses keratinocyte proliferation in vitro. Int J Dermatol. 2015;54(8):e309–14. https://doi.org/10.1111/ijd.12836.

    Article  PubMed  CAS  Google Scholar 

  19. Reame N, Sauder SE, Kelch RP, Marshall JC. Pulsatile gonadotropin secretion during the human menstrual cycle: evidence for altered frequency of gonadotropin-releasing hormone secretion. J Clin Endocrinol Metab. 1984;59(2):328–37.

    Article  PubMed  CAS  Google Scholar 

  20. Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, et al. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-γ. Endocrinology. 2007;148(10):5011–9.

    Article  PubMed  CAS  Google Scholar 

  21. Karponis D, Ananth S. The role of thyrostimulin and its potential clinical significance. Endocr Regul. 2017;51(2):117–28. https://doi.org/10.1515/enr-2017-0012.

    Article  PubMed  Google Scholar 

  22. Bassett JH, van der Spek A, Logan JG, Gogakos A, Bagchi-Chakraborty J, Williams AJ, et al. Thyrostimulin regulates osteoblastic bone formation during early skeletal development. Endocrinology. 2015;156(9):3098–113. https://doi.org/10.1210/en.2014-1943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sun SC, Hsu PJ, Wu FJ, Li SH, Lu CH, Luo CW. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J Biol Chem. 2010;285(6):3758–65. https://doi.org/10.1074/jbc.M109.066266.

    Article  PubMed  CAS  Google Scholar 

  24. Yokoyama Y, Nakamura T, Nakamura R, Irahara M, Aono T, Sugino H. Identification of activins and follistatin proteins in human follicular fluid and placenta. J Clin Endocrinol Metab. 1995;80(3):915–21. https://doi.org/10.1210/jcem.80.3.7883850.

    Article  PubMed  CAS  Google Scholar 

  25. Guo J, Tian T, Lu D, Xia G, Wang H, Dong M. Alterations of maternal serum and placental follistatin-like 3 and myostatin in pre-eclampsia. J Obstet Gynaecol Res. 2012;38(7):988–96. https://doi.org/10.1111/j.1447-0756.2011.01823.x.

    Article  PubMed  CAS  Google Scholar 

  26. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. https://doi.org/10.1210/er.2010-0013.

    Article  PubMed  Google Scholar 

  27. Arey RN, Enwright JF 3rd, Spencer SM, Falcon E, Ozburn AR, Ghose S, et al. An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry. 2014;19(3):342–50. https://doi.org/10.1038/mp.2013.12.

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Montrose-Rafizadeh C, Adams L, Raygada M, Nadiv O, Egan JM. GIP regulates glucose transporters, hexokinases, and glucose-induced insulin secretion in RIN 1046–38 cells. Mol Cell Endocrinol. 1996;116(1):81–7. https://doi.org/10.1016/0303-7207(95)03701-2.

    Article  PubMed  CAS  Google Scholar 

  29. Maida A, Hansotia T, Longuet C, Seino Y, Drucker DJ. Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterology. 2009;137(6):2146–57. https://doi.org/10.1053/j.gastro.2009.09.004.

    Article  PubMed  CAS  Google Scholar 

  30. Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, et al. Nutritional control of thyroid morphogenesis through gastrointestinal hormones. Curr Biol. 2022;32(7):1485-96 e4. https://doi.org/10.1016/j.cub.2022.01.075.

    Article  PubMed  CAS  Google Scholar 

  31. Jelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589(6):1251–8.

    Article  PubMed  CAS  Google Scholar 

  32. Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic acids research. 2012;gks1161.https://circadb.hogeneschlab.org.

  33. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, et al. The transcriptome of human oocytes. Proc Natl Acad Sci. 2006;103(38):14027–32.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J Biol Chem. 2000;275(52):40788–96. https://doi.org/10.1074/jbc.M006114200.

    Article  PubMed  CAS  Google Scholar 

  35. Kameda H, Yamamoto M, Tone Y, Tone M, Melmed S. Proton sensitivity of corticotropin-releasing hormone receptor 1 signaling to proopiomelanocortin in male mice. Endocrinology. 2019;160(2):276–91. https://doi.org/10.1210/en.2018-00920.

    Article  PubMed  CAS  Google Scholar 

  36. Makrigiannakis A, Zoumakis E, Kalantaridou S, Chrousos G, Gravanis A. Uterine and embryonic trophoblast CRH promotes implantation and maintenance of early pregnancy. Ann N Y Acad Sci. 2003;997:85–92.

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Wypior G, Jeschke U, Kurpisz M, Szekeres-Bartho J. Expression of CRH, CRH-related peptide and CRH receptor in the ovary and potential CRH signalling pathways. J Reprod Immunol. 2011;90(1):67–73. https://doi.org/10.1016/j.jri.2011.04.009.

    Article  PubMed  CAS  Google Scholar 

  38. Dautzenberg FM, Wille S, Braun S, Hauger RL. GRK3 regulation during CRF- and urocortin-induced CRF1 receptor desensitization. Biochem Biophys Res Commun. 2002;298(3):303–8. https://doi.org/10.1016/s0006-291x(02)02463-4.

    Article  PubMed  CAS  Google Scholar 

  39. Fekete EM, Inoue K, Zhao Y, Rivier JE, Vale WW, Szucs A, et al. Delayed satiety-like actions and altered feeding microstructure by a selective type 2 corticotropin-releasing factor agonist in rats: intra-hypothalamic urocortin 3 administration reduces food intake by prolonging the post-meal interval. Neuropsychopharmacology. 2007;32(5):1052–68. https://doi.org/10.1038/sj.npp.1301214.

    Article  PubMed  CAS  Google Scholar 

  40. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron. 1998;20(6):1093–102. https://doi.org/10.1016/s0896-6273(00)80491-2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann A. Kiessling.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, A.L., Dinopoulou, V., Loutradis, D. et al. Microarray evidence that 8-cell human embryos express some hormone family members including oxytocin. J Assist Reprod Genet 41, 323–332 (2024). https://doi.org/10.1007/s10815-023-03002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-03002-8

Keywords

Navigation