Skip to main content

Advertisement

Log in

Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders

  • REVIEW
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The Bacille Calmette-Guerin (BCG) vaccine is one of the most widely used vaccines in the world for the prevention of tuberculosis. Its immunological capacity also includes epigenetic reprogramming, activation of T cells and inflammatory responses. Although the main usage of the vaccine is the prevention of tuberculosis, different works have shown that the effect of BCG can go beyond the peripheral immune response and be linked to the central nervous system by modulating the immune system at the level of the brain. This review therefore aims to describe the BCG vaccine, its origin, its relationship with the immune system, and its involvement at the brain level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

AVAILABILITY OF DATA AND MATERIALS

No datasets were generated or analyzed during the current study.

References

  1. Andersen, P., and T.M. Doherty. 2005. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nature Reviews. Microbiology 3 (8): 656–662.

    Article  CAS  PubMed  Google Scholar 

  2. Fatima, S., A. Kumari, G. Das, and V.P. Dwivedi. 2020. Tuberculosis vaccine: a journey from BCG to present. Life Sciences 252: 117594.

    Article  CAS  PubMed  Google Scholar 

  3. Moreo, E., A. Jarit-Cabanillas, I. Robles-Vera, S. Uranga, C. Guerrero, A.B. Gómez, et al. 2023. Intravenous administration of BCG in mice promotes natural killer and T cell-mediated antitumor immunity in the lung. Nature Communications 14 (1): 6090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tran, Kim A., E. Pernet, M. Sadeghi, J. Downey, J. Chronopoulos, E. Lapshina, O. Tsai, E. Kaufmann, J. Ding, and M. Divangahi. 2024. BCG immunization induces CX3CR1hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity. Nature Immunology 25: 418–431

  5. Jeyanathan, M., M. Vaseghi-Shanjani, S. Afkhami, J.A. Grondin, A. Kang, M.R. D’Agostino, et al. 2022. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut–lung axis. Nature Immunology 23 (12): 1687–1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh, Alok K., R. Wang, K.A Lombardo, M. Praharaj, C.K. Bullen, P. Um, S. Davis, et al. 2022. Dynamic single-cell RNA sequencing reveals BCG vaccination curtails SARS-CoV-2 induced disease severity and lung inflammation. biorxiv: the Preprint Server for Biology. Mar 15. https://doi.org/10.1101/2022.03.15.484018

  7. Rakshit, S., V. Adiga, A. Ahmed, C. Parthiban, N.C. Kumar, P. Dwarkanath, S. Shivalingaiah, et al. 2022. BCG revaccination qualitatively and quantitatively enhances SARS-CoV-2 spike-specific neutralizing antibody and T cell responses induced by the COVISHIELDTM vaccine in SARS-CoV-2 seronegative young Indian adults. Research Square. Mar 2. https://doi.org/10.21203/rs.3.rs-1395683/v1

  8. Kowalewicz-Kulbat, M., and C. Locht. 2017. BCG and protection against inflammatory and auto-immune diseases. Expert Review of Vaccines 16 (7): 699–708.

    Article  CAS  Google Scholar 

  9. Yong, J., G. Lacan, H. Dang, T. Hsieh, B. Middleton, C. Wasserfall, et al. 2011. BCG vaccine-induced neuroprotection in a mouse model of Parkinson’s disease. PLoS One 6 (1): e16610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Q., Y. Zhang, J. Zou, F. Qi, J. Yang, Q. Yuan, et al. 2016. Neonatal vaccination with bacille Calmette-Guérin promotes the dendritic development of hippocampal neurons. Human Vaccines & Immunotherapeutics 12 (1): 140–149.

    Article  Google Scholar 

  11. Han, J., X. Gu, Y. Li, and Q. Wu. 2020. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomedicine & Pharmacotherapy 129: 110393.

    Article  CAS  Google Scholar 

  12. Radhakrishnan, R.K., R.S. Thandi, D. Tripathi, P. Paidipally, M.K. McAllister, S. Mulik, et al.  2020. BCG vaccination reduces the mortality of Mycobacterium tuberculosis–infected type 2 diabetes mellitus mice. JCI Insight 5 (5).

  13. Brook, B., D.J. Harbeson, C.P. Shannon, B. Cai, D. He, R. Ben-Othman, et al. 2020. BCG vaccination–induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Science Translational Medicine 12 (542).

  14. Faustman, D.L., A. Lee, E.R. Hostetter, A. Aristarkhova, N.C. Ng, G.F. Shpilsky, et al. 2022. Multiple BCG vaccinations for the prevention of COVID-19 and other infectious diseases in type 1 diabetes. Cell Reports Medicine 3 (9): 100728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cossu, D., S. Ruberto, K. Yokoyama, N. Hattori, and L.A. Sechi. 2022. Efficacy of BCG vaccine in animal models of neurological disorders. Vaccine 40 (3): 432–436.

    Article  CAS  PubMed  Google Scholar 

  16. Zuo, Z., F. Qi, Z. Xing, L. Yuan, Y. Yang, Z. He, et al. 2021. Bacille Calmette-Guérin attenuates vascular amyloid pathology and maximizes synaptic preservation in APP/PS1 mice following active amyloid-β immunotherapy. Neurobiology of Aging 101: 94–108.

    Article  CAS  PubMed  Google Scholar 

  17. Gofrit, O.N., H. Bercovier, B.Y. Klein, I.R. Cohen, T. Ben-Hur, and C.L. Greenblatt. 2019. Can immunization with Bacillus Calmette-Guérin (BCG) protect against Alzheimer’s disease? Medical Hypotheses 123: 95–97.

    Article  CAS  PubMed  Google Scholar 

  18. Yedke, N.G., D. Soni, and P. Kumar. 2023. Effect of Bacille‐Calmette‐Guerin vaccine against rotenone‐induced Parkinson’s disease: role of neuroinflammation and neurotransmitters. Fundamental & Clinical Pharmacology. Dec 2. https://doi.org/10.1111/fcp.12968

  19. Schaltz-Buchholzer, F., M. Kjær Sørensen, C.S. Benn, and P. Aaby. 2022. The introduction of BCG vaccination to neonates in Northern Sweden, 1927–31: re-analysis of historical data to understand the lower mortality among BCG-vaccinated children. Vaccine 40 (11): 1516–1524.

    Article  PubMed  Google Scholar 

  20. Chen, J., L. Gao, X. Wu, Y. Fan, M. Liu, L. Peng, et al. 2023. BCG-induced trained immunity: history, mechanisms and potential applications. Journal of Translational Medicine 21 (1): 106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, J., J. Lu, G. Wang, A. Zhao, and M. Xu. 2022. Past, present and future of Bacillus Calmette-Guérin vaccine use in China. Vaccines (Basel). 10 (7): 1157.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Singh, A.K., M.G. Netea, and W.R. Bishai. 2021. BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. Journal of Clinical Investigation 131 (11).

  23. Calmette, A., C. Guerin, and B. Weill-Halle. 1924. Essai d’immunisation contre l’infection tuberculeuse. Bulletin de l’Académie Nationale de Médecine 91: 787–796.

    Google Scholar 

  24. Mangtani, P., I. Abubakar, C. Ariti, R. Beynon, L. Pimpin, P.E.M. Fine, et al. 2014. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clinical Infectious Diseases 58 (4): 470–480.

    Article  PubMed  Google Scholar 

  25. Corner, L.A.L., B.M. Buddle, D.U. Pfeiffer, and R.S. Morris. 2001. Aerosol vaccination of the brushtail possum (Trichosurus vulpecula) with bacille Calmette–Guérin: the duration of protection. Veterinary Microbiology 81 (2): 181–191.

    Article  CAS  PubMed  Google Scholar 

  26. Elton, L., S. Kasaragod, H. Donoghue, H.A. Safar, P. Amankwah, A. Zumla, et al. 2023. Mapping the phylogeny and lineage history of geographically distinct BCG vaccine strains. Microbial Genomics 9 (8).

  27. Luca, S., and T. Mihaescu. 2013. History of BCG vaccine. Maedica (Bucur) 8 (1): 53–68.

    PubMed  Google Scholar 

  28. Tran, V., J. Liu, and M.A. Behr. 2014. BCG vaccines. Molecular Genetics of Mycobacteria 2 (1).

  29. Lobo, N., N.A. Brooks, A.R. Zlotta, J.D. Cirillo, S. Boorjian, P.C. Black, et al. 2021. 100 years of Bacillus Calmette-Guérin immunotherapy: from cattle to COVID-19. Nature Reviews. Urology 18 (10): 611–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamazaki-Nakashimada, M.A., A. Unzueta, L. Berenise Gámez-González, N. González-Saldaña, and R.U. Sorensen. 2020. BCG: a vaccine with multiple faces. Human Vaccines & Immunotherapeutics 16 (8): 1841–1850.

    Article  CAS  Google Scholar 

  31. Rakshit, S., V. Adiga, A. Ahmed, C. Parthiban, N. Chetan Kumar, P. Dwarkanath, et al. 2022. Evidence for the heterologous benefits of prior BCG vaccination on COVISHIELDTM vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Frontiers in Immunology 4: 13.

    Google Scholar 

  32. Kleinnijenhuis, J., J. Quintin, F. Preijers, C.S. Benn, L.A.B. Joosten, C. Jacobs, et al. 2014. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journal of Innate Immunity 6 (2): 152–158.

    Article  CAS  PubMed  Google Scholar 

  33. Gela, A., M. Murphy, M. Rodo, K. Hadley, W.A. Hanekom, W.H. Boom, et al. 2022. Effects of BCG vaccination on donor unrestricted T cells in two prospective cohort studies. eBioMedicine 76: 103839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaufmann, E., J. Sanz, J.L. Dunn, N. Khan, L.E. Mendonça, A. Pacis, et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172 (1–2): 176-190.e19.

    Article  CAS  PubMed  Google Scholar 

  35. Cirovic, B., L.C.J. de Bree, L. Groh, B.A. Blok, J. Chan, W.J.F.M. van der Velden, et al. 2020. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host & Microbe 28 (2): 322-334.e5.

    Article  CAS  Google Scholar 

  36. Singh, A.K., M. Praharaj, K.A. Lombardo, T. Yoshida, A. Matoso, A.S. Baras, et al. 2022. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nature Communications 13 (1): 878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Y., F. Ge, J. Wang, H. Li, B. Zheng, W. Li, et al. 2023. Mycobacterium bovis BCG given at birth followed by inactivated respiratory syncytial virus vaccine prevents vaccine-enhanced disease by promoting trained macrophages and resident memory t cells. Journal of Virology 97 (3).

  38. Koeken, V.A.C.M., A.J. Verrall, M.G. Netea, P.C. Hill, and R. van Crevel. 2019. Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clinical Microbiology and Infection 25 (12): 1468–1472.

    Article  CAS  PubMed  Google Scholar 

  39. Debisarun, P.A., G. Kilic, L.C.J. de Bree, L.J. Pennings, J. van Ingen, C.S. Benn, et al. 2023. The impact of BCG dose and revaccination on trained immunity. Clinical Immunology 246: 109208.

    Article  CAS  PubMed  Google Scholar 

  40. Moorlag, S.J.C.F.M., Y.A. Rodriguez-Rosales, J. Gillard, S. Fanucchi, K. Theunissen, B. Novakovic, et al. 2020. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Reports 33 (7): 108387.

    Article  CAS  PubMed  Google Scholar 

  41. Sarfas, C., A.D. White, L. Sibley, A.L. Morrison, J. Gullick, S. Lawrence, et al. 2021. Characterization of the infant immune system and the influence and immunogenicity of BCG vaccination in infant and adult rhesus macaques. Frontiers in Immunology 11: 12.

    Google Scholar 

  42. Kang, A., G. Ye, R. Singh, S. Afkhami, J. Bavananthasivam, X. Luo, et al. 223. Subcutaneous BCG vaccination protects against streptococcal pneumonia via regulating innate immune responses in the lung. EMBO Molecular Medicine 15 (7).

  43. Komine-Aizawa, S., S. Mizuno, A. Kawano, S. Hayakawa, K. Matsuo, and M. Honda. 2023. The induction of antigen 85B-specific CD8+ T cells by recombinant BCG protects against mycobacterial infection in mice. International Journal of Molecular Sciences 24 (2): 966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aagaard, C., N.P.H. Knudsen, I. Sohn, A.A. Izzo, H. Kim, E.H. Kristiansen, et al. 2020. Immunization with Mycobacterium tuberculosis–specific antigens bypasses T cell differentiation from prior Bacillus Calmette-Guérin vaccination and improves protection in mice. The Journal of Immunology 205 (8): 2146–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathurin, K.S., G.W. Martens, H. Kornfeld, and R.M. Welsh. 2009. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. Journal of Virology 83 (8): 3528–3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Triglia, D., K.M. Gogan, J. Keane, and M.P. O’Sullivan. 2023. Glucose metabolism and its role in the maturation and migration of human CD1c+ dendritic cells following exposure to BCG. Frontiers in Cellular and Infection Microbiology 5: 13.

    Google Scholar 

  47. Gonciarz, W., M. Chyb, and M. Chmiela. 2023. Mycobacterium bovis BCG increase the selected determinants of monocyte/macrophage activity, which were diminished in response to gastric pathogen Helicobacter pylori. Scientific Reports 13 (1): 3107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peng, X., Y. Zhou, B. Zhang, X. Liang, J. Feng, Y. Huang, et al. 2024. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring. Journal of Biological Chemistry 300 (1): 105518.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmed, A., H. Tripathi, K.E. van Meijgaarden, N.C. Kumar, v Adiga, S. Rakshit, et al. 2023. BCG revaccination in adults enhances pro-inflammatory markers of trained immunity along with anti-inflammatory pathways. iScience 26 (10): 107889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Narinyan, W., N. Poladian, D. Orujyan, A. Gargaloyan, and V. Venketaraman. 2022. Immunologic role of innate lymphoid cells against Mycobacterial tuberculosis Infection. Biomedicines. 10 (11): 2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar, N.P., C. Padmapriyadarsini, A. Rajamanickam, P.K. Bhavani, A. Nancy, B. Jayadeepa, et al. 2021. BCG vaccination induces enhanced frequencies of memory T cells and altered plasma levels of common γc cytokines in elderly individuals. PLoS One 16 (11): :e0258743.

    Article  PubMed  Google Scholar 

  52. Gerosa, F., B. Baldani-Guerra, C. Nisii, V. Marchesini, G. Carra, and G. Trinchieri. 2002. Reciprocal activating interaction between natural killer cells and dendritic cells. The Journal of Experimental Medicine 195 (3): 327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Feinberg, J., C. Fieschi, R. Doffinger, M. Feinberg, T. Leclerc, S. Boisson-Dupuis, et al. 2004. Bacillus Calmette Guérin triggers the IL-12/IFN-γ axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. European Journal of Immunology 34 (11): 3276–3284.

    Article  CAS  PubMed  Google Scholar 

  54. Perdomo, C., U. Zedler, A.A. Kühl, L. Lozza, P. Saikali, L.E. Sander, et al. 2016. Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. mBio 7 (6).

  55. Li, Q., and H.-H. Shen. 2009. Neonatal bacillus Calmette-Guérin vaccination inhibits de novo allergic inflammatory response in mice via alteration of CD4+CD25+ T-regulatory cells. Acta Pharmacologica Sinica 30 (1): 125–133.

    Article  CAS  PubMed  Google Scholar 

  56. Aaby, P., A. Roth, H. Ravn, B.M. Napirna, A. Rodrigues, I.M. Lisse, et al. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? The Journal of Infectious Diseases 204 (2): 245–252.

    Article  CAS  PubMed  Google Scholar 

  57. Cancelier, A.C., F. Petronilho, A. Reinke, L. Constantino, R. Machado, C. Ritter, et al. 2009. Inflammatory and oxidative parameters in cord blood as diagnostic of early-onset neonatal sepsis: a case-control study. Pediatric Critical Care Medicine. 10 (4): 467–71.

    Article  PubMed  Google Scholar 

  58. Moorlag, S.J.C.F.M., R.J.W. Arts, R. van Crevel, and M.G. Netea. 2019. Non-specific effects of BCG vaccine on viral infections. Clinical Microbiology and Infection 25 (12): 1473–1478.

    Article  CAS  PubMed  Google Scholar 

  59. Sylvester, R.J., A.P.M. van der Meijden, J.A. Witjes, and K. Kurth. 2005. Bacillus Calmette-Guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. Journal of Urology. 174 (1): 86–91.

    Article  CAS  PubMed  Google Scholar 

  60. Lamm, D.L., B.A. Blumenstein, J.D. Crissman, J.E. Montie, J.E. Gottesman, B.A. Lowe, et al. 2000. Maintenance Bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group study. Journal of Urology 163 (4): 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  61. Kleinnijenhuis, J., J. Quintin, F. Preijers, L.A.B. Joosten, D.C. Ifrim, S. Saeed, et al. 2012. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences. 109 (43): 17537–17542.

    Article  CAS  Google Scholar 

  62. Méndez-Samperio, P., A. Pérez, and L. Alba. 2010. Reactive oxygen species-activated p38/ERK 1/2 MAPK signaling pathway in the Mycobacterium bovis Bacillus Calmette Guérin (BCG)-induced CCL2 secretion in human monocytic cell line THP-1. Archives of Medical Research 41 (8): 579–585.

    Article  PubMed  Google Scholar 

  63. Méndez-Samperio, P., A. Pérez, and L. Torres. 2009. Role of reactive oxygen species (ROS) in Mycobacterium bovis Bacillus Calmette Guérin-mediated up-regulation of the human cathelicidin LL-37 in A549 cells. Microbial Pathogenesis 47 (5): 252–257.

    Article  PubMed  Google Scholar 

  64. Al-Humairi, R.M.A., T. Hashim Mohammad, S. Thanoon Ahmed, and Ad’hiah AH. 2023. Systemic interleukin-6 response after intravesical instillation of Bacillus Calmette-Guérin and mitomycin C in superficial bladder cancer. Archives of Razi Institute 78 (1): 353–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Koeken, V.A.C.M. 2021. Controlling inflammation in the elderly with BCG vaccination. Science Advances 7 (32).

  66. Koeken, V.A.C.M., L.C.J. de Bree, V.P. Mourits, S.J.C.F.M. Moorlag, J. Walk, B. Cirovic, et al. 2020. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. Journal of Clinical Investigation 130 (10): 5591–5602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, W., Z. Dong, Y. Li, Y. Zhang, H. Fu, and Y. Xie. 2021. Therapeutic efficacy of chitosan nanoparticles loaded with BCG-polysaccharide nucleic acid and ovalbumin on airway inflammation in asthmatic mice. European Journal of Clinical Microbiology & Infectious Diseases. 40 (8): 1623–1631.

    Article  CAS  Google Scholar 

  68. Simon Machado, R., K. Mathias, L. Joaquim, R. Willig de Quadros, F. Petronilho, and G.T. Rezin. 2023. From diabetic hyperglycemia to cerebrovascular damage: a narrative review. Brain Research 1821: 148611.

    Article  CAS  PubMed  Google Scholar 

  69. Yedke, N.G., S. Upadhayay, R. Singh, S. Jamwal, S.F. Ahmad, and P. Kumar. 2023. Bacillus Calmette-Guérin vaccine attenuates haloperidol-induced TD-like behavioral and neurochemical alteration in experimental rats. Biomolecules 13 (11): 1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dow, C.T., C.L. Greenblatt, E.D. Chan, and J.F. Dow. 2022. Evaluation of BCG vaccination and plasma amyloid: a prospective, pilot study with implications for Alzheimer’s disease. Microorganisms. 10 (2): 424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klein, B.Y., C.L. Greenblatt, O.N. Gofrit, and H. Bercovier. 2022. Bacillus Calmette-Guérin in immuno-regulation of Alzheimer’s disease. Front Aging Neurosci. 27: 14.

    Google Scholar 

  72. Klinger, D., B.L. Hill, N. Barda, E. Halperin, O.N. Gofrit, C.L. Greenblatt, et al. 2021. Bladder cancer immunotherapy by BCG is associated with a significantly reduced risk of Alzheimer’s disease and Parkinson’s disease. Vaccines (Basel). 9 (5): 491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, Q., X. Wang, Z.H. Wang, Z. Lin, J. Yang, J. Chen, et al. 2022. Changes in dendritic complexity and spine morphology following BCG immunization in APP/PS1 mice. Human Vaccines & Immunotherapeutics 18 (6).

  74. Zuo, Z., F. Qi, J. Yang, X. Wang, Y. Wu, Y. Wen, et al. 2017. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain. Neurobiology of Diseases 101: 27–39.

    Article  CAS  Google Scholar 

  75. Barichello, T., J.S. Generoso, L.R. Simões, J.A. Goularte, F. Petronilho, P. Saigal, et al. 2016. Role of microglial activation in the pathophysiology of bacterial meningitis. Molecular Neurobiology 53 (3): 1770–1781.

    Article  CAS  PubMed  Google Scholar 

  76. Laćan, G., H. Dang, B. Middleton, M.A. Horwitz, J. Tian, W.P. Melega, et al. 2013. Bacillus Calmette-Guerin vaccine-mediated neuroprotection is associated with regulatory T-cell induction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Journal of Neuroscience Research 91 (10): 1292–1302.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Witschkowski, J., J. Behrends, R. Frank, L. Eggers, L. von Borstel, D. Hertz, et al. 2020. BCG Provides short-term protection from experimental cerebral malaria in mice. Vaccines (Basel). 8 (4): 745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kulkarni, S., S. Mukherjee, A. Pandey, R. Dahake, U. Padmanabhan, and A.S. Chowdhary. 2016. Bacillus Calmette-Guérin Confers neuroprotection in a murine model of Japanese encephalitis. NeuroImmunoModulation 23 (5–6): 278–286.

    Article  CAS  PubMed  Google Scholar 

  79. Yang, J., F. Qi, and Z. Yao. 2016. Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice. Molecular Medicine Reports 14 (2): 1574–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, J., F. Qi, H. Gu, J. Zou, Y. Yang, Q. Yuan, et al. 2016. Neonatal BCG vaccination of mice improves neurogenesis and behavior in early life. Brain Research Bulletin 120: 25–33.

    Article  CAS  PubMed  Google Scholar 

  81. Cossu, D., K. Yokoyama, Y. Tomizawa, E. Momotani, and N. Hattori. 2017. Altered humoral immunity to mycobacterial antigens in Japanese patients affected by inflammatory demyelinating diseases of the central nervous system. Scientific Reports 7 (1): 3179.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ristori, G., M.G. Buzzi, U. Sabatini, E. Giugni, S. Bastianello, F. Viselli, et al. 1999. Use of Bacille Calmette-Guèrin (BCG) in multiple sclerosis. Neurology 53 (7): 1588–1588.

    Article  CAS  PubMed  Google Scholar 

  83. Paolillo, A., M.G. Buzzi, E. Giugni, U. Sabatini, S. Bastianello, C. Pozzilli, et al. 2003. The effect of Bacille Calmette-Guérin on the evolution of new enhancing lesions to hypointense T1 lesions in relapsing remitting MS. Journal of Neurology 250 (2): 247–248.

    Article  CAS  PubMed  Google Scholar 

  84. Cossu, D., K. Yokoyama, T. Sakanishi, L.A. Sechi, and N. Hattori. 2023. Bacillus Calmette-Guérin Tokyo-172 vaccine provides age-related neuroprotection in actively induced and spontaneous experimental autoimmune encephalomyelitis models. Clinical and Experimental Immunology 212 (1): 70–80.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Keefe, R.C., H. Takahashi, L. Tran, K. Nelson, N. Ng, W.M. Kühtreiber, et al. 2021. BCG therapy is associated with long-term, durable induction of Treg signature genes by epigenetic modulation. Scientific Reports 11 (1): 14933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ristori, G., D. Faustman, G. Matarese, S. Romano, and M. Salvetti. 2018. Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Current Opinion in Immunology 55: 89–96.

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez-Pena, D., S.E. Nixon, J.C. O’Connor, B.R. Southey, M.A. Lawson, R.H. McCusker, et al. 2016. Microglia transcriptome changes in a model of depressive behavior after immune challenge. PLoS One1 11 (3).

    Article  Google Scholar 

  88. Cao, D.H., J.C. Wang, J. Liu, Y.T. Du, L.W. Cui, and Y.M. Cao. 2016. Bacillus Calmette-Guerin-inoculation at different time points influences the outcome of C57BL/6 mice infected with Plasmodium chabaudi chabaudi AS. Folia Parasitol (Praha). 1: 63.

    Google Scholar 

  89. Elvang, T., J.P. Christensen, R. Billeskov, T. Thi Kim Thanh, P. Holst, A.R. Thomsen, et al. 2009. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination. PLoS One 4 (4): e5139.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Falke, J., J. Parkkinen, L. Vaahtera, C.A. Hulsbergen-van de Kaa, E. Oosterwijk, and J.A. Witjes. 2018. Curcumin as treatment for bladder cancer: a preclinical study of cyclodextrin-curcumin complex and BCG as intravesical treatment in an orthotopic bladder cancer rat model. BioMed Research International 2018: 1–7.

    Article  Google Scholar 

  91. Ferraz, J.C., E. Stavropoulos, M. Yang, S. Coade, C. Espitia, D.B. Lowrie, et al. 2004. A heterologous DNA priming-Mycobacterium bovis BCG boosting immunization strategy using mycobacterial Hsp70, Hsp65, and Apa antigens improves protection against tuberculosis in mice. Infection and Immunity 72 (12): 6945–6950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fitzpatrick, M., M.M. Ho, S. Clark, B. Dagg, B. Khatri, F. Lanni, et al. 2019. Comparison of pellicle and shake flask-grown BCG strains by quality control assays and protection studies. Tuberculosis 114: 47–53.

    Article  CAS  PubMed  Google Scholar 

  93. Gomes-Giacoia, E., M. Miyake, S. Goodison, A. Sriharan, G. Zhang, L. You, et al. 2014. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One1 9 (6): e96705.

    Article  Google Scholar 

  94. Hogarth, P.J., K.E. Logan, J.C. Ferraz, R.G. Hewinson, and M.A. Chambers. 2006. Protective efficacy induced by Mycobacterium bovis bacille Calmette-Guèrin can be augmented in an antigen independent manner by use of non-coding plasmid DNA. Vaccine. 24 (1): 95–101.

    Article  CAS  PubMed  Google Scholar 

  95. Huang, P., C. Ma, P. Xu, K. Guo, A. Xu, and C. Liu. 2015. Efficacy of intravesical Bacillus Calmette-Guérin therapy against tumor immune escape in an orthotopic model of bladder cancer. Experimental and Therapeutic Medicine 9 (1): 162–166.

    Article  CAS  PubMed  Google Scholar 

  96. Kolibab, K., A. Yang, S.C. Derrick, T.A. Waldmann, L.P. Perera, and S.L. Morris. 2010. Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clinical and Vaccine Immunology. 17 (5): 793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lombardo, K.A., A. Obradovic, A.K. Singh, J.L. Liu, G. Joice, M. Kates, et al. 2022. BCG invokes superior STING-mediated innate immune response over radiotherapy in a carcinogen murine model of urothelial cancer. The Journal of Pathology 256 (2): 223–234.

    Article  CAS  PubMed  Google Scholar 

  98. McShane, H., R. Brookes, S.C. Gilbert, and A.V.S. Hill. 2001. Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infection and Immunity 69 (2): 681–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Romano, M., S. Dsouza, P. Adnet, R. Laali, F. Jurion, K. Palfliet, et al. 2006. Priming but not boosting with plasmid DNA encoding mycolyl-transferase Ag85A from Mycobacterium tuberculosis increases the survival time of Mycobacterium bovis BCG vaccinated mice against low dose intravenous challenge with M. tuberculosis H37Rv. Vaccine. 24 (16): 3353–3364.

    Article  CAS  PubMed  Google Scholar 

  100. Skinner, M.A., A.J. Ramsay, G.S. Buchan, D.L. Keen, C. Ranasinghe, L. Slobbe, et al. 2003. A DNA prime-live vaccine boost strategy in mice can augment IFN-γ responses to mycobacterial antigens but does not increase the protective efficacy of two attenuated strains of Mycobacterium bovis against bovine tuberculosis. Immunology 108 (4): 548–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Song, D., F. Qi, S. Liu, Z. Tang, J. Duan, and Z. Yao. 2020. The adoptive transfer of BCG-induced T lymphocytes contributes to hippocampal cell proliferation and tempers anxiety-like behavior in immune deficient mice. PLoS One 15 (4): e0225874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tkachuk, A.P., V.A. Gushchin, V.D. Potapov, A.V. Demidenko, V.G. Lunin, and A.L. Gintsburg. 2017. Multi-subunit BCG booster vaccine GamTBvac: assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One 12 (4): e0176784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Uranga, S., D. Marinova, C. Martin, and N. Aguilo. 2016. Protective efficacy and pulmonary immune response following subcutaneous and intranasal BCG administration in mice. Journal of Visualized Experiments (115).

  104. Pedras-Vasconcelos, J.A., Y. Chapdelaine, R. Dudani, H. van Faassen, D.K. Smith, and S. Sad. 2002. Mycobacterium bovis BCG-infected mice are more susceptible to staphylococcal enterotoxin B-mediated toxic shock than uninfected mice despite reduced in vitro splenocyte responses to superantigens. Infection and Immunity 70 (8): 4148–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu, H., Y. Jia, Y. Li, C. Wei, W. Wang, R. Guo, et al. 2019. IL-10 Dampens the Th1 and Tc activation through modulating DC functions in BCG vaccination. Mediators of Inflammation 12 (2019): 1–10.

    Google Scholar 

  106. Zhou, H., X. Lu, J. Huang, P. Jordan, S. Ma, L. Xu, et al. 2022. Induction of trained immunity protects neonatal mice against microbial sepsis by boosting both the inflammatory response and antimicrobial activity. Journal of Inflammation Research 15: 3829–3845.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

To the University of Southern Santa Catarina. To the Laboratory of Cerebrovascular Diseases at the University of Extremo Sul Catarinense. To the team members who assisted in all stages of the article.

Funding

This work was supported by development agencies: Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the article. KM and RSM: conceptualization; data curation; formal analysis; investigation; visualization; writing—original draft; writing—review and editing; conceptualization and writing. FP: data curation; formal analysis; writing—original draft; writing; supervision. All other authors commented on earlier versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Fabricia Petronilho.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathias, K., Machado, R.S., Stork, S. et al. Bacillus Calmette-Guérin (BCG)-Induced Protection in Brain Disorders. Inflammation (2024). https://doi.org/10.1007/s10753-024-02018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02018-1

KEY WORDS

Navigation