Skip to main content
Log in

Duloxetine HCl Alleviates Asthma Symptoms by Regulating PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Asthma is an inflammatory disease characterized by airway hyperresponsiveness, airway remodeling, and airway inflammation. In recent years, the prevalence of asthma has been increasing steadily and the pathogenesis of asthma varies from person to person. Due to poor compliance or resistance, existing drugs cannot achieve the desired therapeutic effect. Therefore, developing or screening asthma therapeutic drugs with high curative effects, low toxicity, and strong specificity is very urgent. Duloxetine HCl (DUX) is a selective serotonin and norepinephrine reuptake inhibitor, and it was mainly used to treat depression, osteoarthritis, and neuropathic pain. It was also reported that DUX has potential anti-infection, anti-inflammation, analgesic, antioxidative, and other pharmacological effects. However, whether DUX has some effects on asthma remains unknown. In order to investigate it, a series of ex vivo and in vivo experiments, including biological tension tests, patch clamp, histopathological analysis, lung function detection, oxidative stress enzyme activity detection, and molecular biology experiments, were designed in this study. We found that DUX can not only relax high potassium or ACh precontracted tracheal smooth muscle by regulating L-type voltage-dependent Ca2+ channel (L-VDCC) and nonselective cation channel (NSCC) ion channels but also alleviate asthma symptoms through anti-inflammatory and antioxidative response regulated by PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. Our data suggests that DUX is expected to become a potential new drug for relieving or treating asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated and analyzed in this study are available upon reasonable request from the corresponding author.

Abbreviations

ACh:

Acetylcholine chloride

Al(OH)3 :

Aluminum hydroxide

BALF:

Bronchoalveolar lavage fluids

BSA:

Bovine serum albumin

CAT:

Catalase

DEX:

Dexamethasone

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

DUX:

Duloxetine HCl

Ers:

Respiratory system elasticity

HBSS:

Hanks’ balanced salt solution

H&E:

Hematoxylin and eosin

HO-1:

Heme oxygen 1

IC50 :

Half-maximal inhibitory concentration

IC75 :

Seventy-five percent of maximal inhibitory concentration

IL-4:

Interleukin 4

IL-5:

Interleukin 5

IL-13:

Interleukin 13

IG:

Intragastrical administration

IN:

Intranasally

IP:

Intraperitoneal injections

Keap1:

Kelch-like ECH-associated protein 1

L-VDCC:

L-type voltage-dependent Ca2+ channel

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

mTOR:

Mammalian target of rapamycin

mTRs:

Mouse tracheal rings

NA:

Niflumic acid

Nrf2:

Nuclear factor-erythroid 2-related factor 2

NSCCs:

Nonselective cation channels

OVA:

Ovalbumin

PAS:

Periodic acid-Schiff

PFA:

Paraformaldehyde

PI3K:

Phosphatidylinositol-3-kinase

PSS:

Physiological salts solution

Pyr3:

Pyrazole 3

Rrs:

Respiratory system resistance

SD:

Standard deviation

SNRI:

Serotonin and norepinephrine reuptake inhibitors

SPF:

Specific pathogen-free

SOD:

Superoxide dismutase

TEA:

Tetraethylammonium chloride

TBST:

Tris-Buffered Saline Tween-20

TNF-α:

Tumor necrosis factor alpha

TRPC3:

Transient receptor potential channel 3

References

  1. To, T., S. Stanojevic, G. Moores, A.S. Gershon, E.D. Bateman, and A.A. Cruz. 2012. Boulet L-PJBph: Global asthma prevalence in adults: Findings from the cross-sectional world health survey. 12: 1–8.

    Google Scholar 

  2. Mortimer, K., M. Lesosky, L. García-Marcos, M.I. Asher, N. Pearce, E. Ellwood, K. Bissell, A. El Sony, P. Ellwood, and G.B.J.E.R.J. Marks. 2022. The burden of asthma, hay fever and eczema in adults in 17 countries: GAN Phase I study. 60.

  3. Gauvreau, G.M., and A.I. El-Gammal. 2015. O’Byrne PMJERJ: Allergen-induced airway responses. 46: 819–831.

    CAS  Google Scholar 

  4. Rachelefsky, G.S., and Y. Liao. 2007. Faruqi RJAoA. Asthma, Immunology: Impact of inhaled corticosteroid-induced oropharyngeal adverse events: Results from a meta-analysis. 98: 225–238.

    CAS  Google Scholar 

  5. Ercan, H., E. Birben, E.A. Dizdar, O. Keskin, C. Karaaslan, O.U. Soyer, R. Dut, C. Sackesen, and T. Besler. 2006. Kalayci OJJoA. Immunology C: Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. 118: 1097–1104.

    CAS  Google Scholar 

  6. Kirkham, P., and I.J.P. Rahman. 2006. Therapeutics: Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. 111: 476–494.

  7. Erzurum, S.C. 2016. JAotATS: New insights in oxidant biology in asthma. 13: S35–S39.

  8. Comhair, S.A., and S.C.J.A. Erzurum. 2010. Signaling r: Redox control of asthma: molecular mechanisms and therapeutic opportunities. 12: 93–124.

  9. Yang, L.-L., M.-S. Huang, C.-C. Huang, T.-H. Wang, M.-C. Lin, C.-C. Wu, C.-C. Wang, and S.-H. Lu. 2011. Yuan T-Y. Liao Y-HJIaoa, immunology: The association between adult asthma and superoxide dismutase and catalase gene activity. 156: 373–380.

    CAS  Google Scholar 

  10. Zhu, Y., C. Wang, J. Luo, S. Hua, D. Li, L. Peng, H. Liu, and L.J.F. Song. 2021. Function: The protective role of Zingerone in a murine asthma model via activation of the AMPK/Nrf2/HO-1 pathway. 12: 3120–3131.

  11. Lim, J.-O., K.H. Song, I.S. Lee, S.-J. Lee, W.-I. Kim, S-W. Pak, I-S. Shin, and T.J.A Kim. 2021. Cimicifugae rhizoma extract attenuates oxidative stress and airway inflammation via the upregulation of Nrf2/HO-1/NQO1 and downregulation of NF-κB phosphorylation in ovalbumin-induced asthma. 10: 1626.

  12. Osani, M.C. 2019. Bannuru RRJTKjoim: Efficacy and safety of duloxetine in osteoarthritis: A systematic review and meta-analysis. 34: 966.

    CAS  Google Scholar 

  13. Jones, C.K., and S.C. Peters. 2007. Peters SC. Shannon HEJEJoP: Synergistic interactions between the dual serotonergic, noradrenergic reuptake inhibitor duloxetine and the non-steroidal anti-inflammatory drug ibuprofen in inflammatory pain in rodents. 11: 208–215.

    CAS  Google Scholar 

  14. Martín-Hernández, D., Á.G. Bris, K.S. MacDowell, B. García-Bueno, J.L. Madrigal, J.C. Leza, and J.R.J.N. Caso. 2016. Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats. 103: 79–91.

  15. Martínez, F.C.P., and R.V. Navarrete. 2006. Reparaz CCJAEdU: Comparative effects of clomipramine and duloxetine on detrusor and striated sphincter function in male and female rabbits. 59: 839–848.

    Google Scholar 

  16. Engel, D.F., J. de Oliveira, V. Lieberknecht, A.L.S. Rodrigues, A.F. de Bem, and N.H.J.N.r. Gabilan. 2018. Duloxetine protects human neuroblastoma cells from oxidative stress-induced cell death through Akt/Nrf-2/HO-1 pathway. 43: 387–396.

  17. Jorgensen, A., K. Köhler-Forsberg, T. Henriksen, A. Weimann, I. Brandslund, C. Ellervik, H.E. Poulsen, G.M. Knudsen, and V.G. Frokjaer. 2022. Jorgensen MBJTp: Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression. 12: 204.

    CAS  Google Scholar 

  18. Meng, J., Q. Zhang, C. Yang, L. Xiao, Z. Xue, and J.J.F.i.P. Zhu. 2019. Duloxetine, a balanced serotonin-norepinephrine reuptake inhibitor, improves painful chemotherapy-induced peripheral neuropathy by inhibiting activation of p38 MAPK and NF-κB. 10: 365.

  19. Yang, N., and Y.J.O.M Shang. 2022. Longevity C: Ferrostatin-1 and 3-methyladenine ameliorate ferroptosis in ova-induced asthma model and in il-13-challenged beas-2b cells.

  20. Zhang, T., X.-J. Luo, W.-B. Sai, M.-F. Yu, W.-E. Li, Y.-F. Ma, W. Chen, K. Zhai, and G. Qin. 2014. Guo DJPo: Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle. 9: e101578.

    Google Scholar 

  21. Jiang, Q.-J., W. Chen, H. Dan, L. Tan, H. Zhu, G. Yang, J. Shen, Y.-B. Peng, P. Zhao, and Xue L. 2016. JE-BC. Medicine A: Cortex phellodendri extract relaxes airway smooth muscle. 8703239

  22. Yang, X., M.-F. Yu, J. Lei, Y.-B. Peng, P. Zhao, L. Xue, W. Chen, L.-Q. Ma, Q.-H. Liu, and J.J.P.M. Shen. 2018. Nuciferine relaxes tracheal rings via the blockade of VDLCC and NSCC channels. 84: 83–90.

    CAS  Google Scholar 

  23. Kalidhindi, R.S.R., N.S. Ambhore, P. Balraj, T. Schmidt, and M.N. Khan. 2021. Sathish VJAJoP-LC. Physiology M: Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. 320: L803–L818.

    CAS  Google Scholar 

  24. Dai, R., M. Niu, N. Wang, and Y.J.E.T. Wang. 2021. Syringin alleviates ovalbumin-induced lung inflammation in BALB/c mice asthma model via NF-κB signaling pathway. 36: 433–444.

    CAS  Google Scholar 

  25. Wang, H., X. Zhong, W.-Y. Shi, and B. Guo. 2011. JAJoB: Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. 10: 9213–9217.

  26. Jones, C.K., and S.C. Peters. 2005. Shannon HEJJoP. Therapeutics E: Efficacy of duloxetine, a potent and balanced serotonergic and noradrenergic reuptake inhibitor, in inflammatory and acute pain models in rodents. 312: 726–732.

    Article  CAS  Google Scholar 

  27. Wang, P., W. Zhao, J. Sun, T. Tao, X. Chen, Y.-Y. Zheng, C.-H. Zhang, Z. Chen, Y.-Q. Gao, F. She, and Y.Q. Li. 2018. Immunology C: Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor–transmembrane protein 16A–voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma. 141: 1259–1268. e1211.

  28. Yang, Y., W. Chen, N. Wen, and C. Cai. 2019. Liu Q-h. Shen JJLs: Benidipine, an anti-hypertensive drug, relaxes mouse airway smooth muscle. 227: 74–81.

    CAS  Google Scholar 

  29. Lu, M., X.X. Fang, D.D. Shi, R. Liu, Y. Ding, Q.F. Zhang, H.Q. Wang, J.M. Tang, and X.J. He. 2020. A selective TRPC3 inhibitor Pyr3 attenuates myocardial ischemia/reperfusion injury in mice. Current Medical Science 40: 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence, K.M., R.C. Jones, T.R. Jackson, R.L. Baylie, B. Abbott, B. Bruhn-Olszewska, T.N. Board, I.C. Locke, S.M. Richardson, and P.A. Townsend. 2017. Chondroprotection by urocortin involves blockade of the mechanosensitive ion channel Piezo1. Science and Reports 7: 5147.

    Article  CAS  Google Scholar 

  31. Keeney, G.E., M.P. Gray, A.K. Morrison, M.N. Levas, E.A. Kessler, G.D. Hill, M.H. Gorelick, and J.L. Jackson. 2014. Dexamethasone for acute asthma exacerbations in children: A meta-analysis. Pediatrics 133: 493–499.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paniagua, N., R. Lopez, N. Muñoz, M. Tames, E. Mojica, E. Arana-Arri, S. Mintegi, and J. Benito. 2017. Randomized trial of dexamethasone versus prednisone for children with acute asthma exacerbations. Journal of Pediatrics 191: 190-196.e191.

    Article  CAS  PubMed  Google Scholar 

  33. Doymaz, S., Y.E. Ahmed, D. Francois, R. Pinto, R. Gist, M. Steinberg, and C. Giambruno. 2022. Methylprednisolone, dexamethasone or hydrocortisone for acute severe pediatric asthma: Does it matter? Journal of Asthma 59: 590–596.

    Article  CAS  Google Scholar 

  34. Filep, J.G., B. Battistini, A. Fournier, and P. Sirois. 1993. JEjop: Relaxation by dexamethasone of isolated guinea-pig airways precontracted with endothelin-1. 240: 315–318.

  35. Obejero-Paz, C.A., M. Lakshmanan, S.W. Jones, and A. Scarpa. 1993. JFl: Effects of dexamethasone on L‐type calcium currents in the A7r5 smooth muscle‐derived cell line. 333: 73–77.

  36. Selli, C., and M. Tosun. 2016. JJop. biochemistry: Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells. 72: 245–253.

  37. Zaiss, M.M., A. Rapin, L. Lebon, L.K. Dubey, I. Mosconi, K. Sarter, A. Piersigilli, L. Menin, A.W. Walker, and J.J.I. Rougemont. 2015. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. 43: 998–1010.

    CAS  Google Scholar 

  38. McGee, H.S., and D.K. Agrawal. 2009. JAjor, medicine cc: Naturally occurring and inducible T-regulatory cells modulating immune response in allergic asthma. 180: 211–225.

  39. Finkelman, F.D., S.P. Hogan, G.K.K. Hershey, and M.E. Rothenberg. 2010. Wills-Karp MJTJoI: Importance of cytokines in murine allergic airway disease and human asthma. 184: 1663–1674.

    CAS  Google Scholar 

  40. Zhang, L., M. Wang, X. Kang, P. Boontheung, N. Li, A.E. Nel, and J.A. Loo. 2009. JJopr: Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. 8: 1631–1638.

  41. Vyas, P., and D. Vohora. 2017. JCdt: Phosphoinositide-3-kinases as the novel therapeutic targets for the inflammatory diseases: current and future perspectives. 18: 1622–1640.

  42. Saunders, R.M., M. Biddle, Y. Amrani, and C.E. Brightling. 2022. JFRB, Medicine: Stressed out-the role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. 185: 97–119

  43. Fuller, R.W., and S.K. Hemrick-Luecke. 1994. Snoddy HDJJoP. Therapeutics E: Effects of duloxetine, an antidepressant drug candidate, on concentrations of monoamines and their metabolites in rats and mice. 269: 132–136.

    CAS  Google Scholar 

  44. Akpinar, A., Uğuz, A.C., and M. Nazıroğlu. 2014. JTJomb: Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: role of TRPM2 and voltage-gated calcium channels. 247: 451–459.

  45. Dionisie, V., G.A. Filip, M.C. Manea, M. Manea, and S.J.I. Riga. 2021. The anti-inflammatory role of SSRI and SNRI in the treatment of depression: A review of human and rodent research studies. 29: 75–90.

    CAS  Google Scholar 

  46. Demirdaş, A., M. Nazıroğlu, and İ.S. Övey. 2017. JMn: Duloxetine reduces oxidative stress, apoptosis, and Ca 2+ entry through modulation of TRPM2 and TRPV1 channels in the hippocampus and dorsal root ganglion of rats. 54: 4683–4695.

  47. Rodrigues-Amorim, D., and J.M. Olivares. 2020. Spuch C. Rivera-Baltanás TJFip: A systematic review of efficacy, safety, and tolerability of duloxetine. 11: 554899.

    Google Scholar 

  48. Hamid, Q. 2009. Tulic MJArop: Immunobiology of asthma. 71: 489–507.

    CAS  Google Scholar 

  49. Pera, T., and R.B. Penn. 2016. J.P. therapeutics: Bronchoprotection and bronchorelaxation in asthma: New targets, and new ways to target the old ones. 164: 82–96.

  50. Hastie, A., C. Steele, C. Dunaway, W. Moore, B. Rector, E. Ampleford, H. Li, L. Denlinger, N. Jarjour, D.J.C. Meyers, and E. Allergy. 2018. Complex association patterns for inflammatory mediators in induced sputum from subjects with asthma. 48: 787–797.

    CAS  Google Scholar 

  51. Meyer, K.C. 2007. Bronchoalveolar lavage as a diagnostic tool. In Seminars in respiratory and critical care medicine. © Thieme Medical Publishers. 546–560.

  52. Kidd, P. 2003. JAmr: Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. 8: 223–246.

  53. Lambrecht, B.N., H. Hammad, and J.V.J.I. Fahy. 2019. The cytokines of asthma. 50: 975–991.

    CAS  Google Scholar 

  54. Nguyen, T.H., S. Maltby, J.L. Simpson, F. Eyers, K.J. Baines, P.G. Gibson, P.S. Foster, and M. Yang. 2016. JTJoI: TNF-α and macrophages are critical for respiratory syncytial virus–induced exacerbations in a mouse model of allergic airways disease. 196: 3547–3558.

  55. Fitzpatrick, A.M., Y. Park, L.A.S. Brown, and D.P. Jones. 2014. JJoA, Immunology C: Children with severe asthma have unique oxidative stress–associated metabolomic profiles. 133: 258–261. e258.

  56. Sebag, S.C., O.M. Koval, J.D. Paschke, C.J. Winters, O.A. Jaffer, R. Dworski, F.S. Sutterwala, M.E. Anderson, and I.M. Grumbach. 2017. JJi: Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma. 2(3): e88297.

  57. Sabir, S., S. Ahmad, A. Hamid, M. Khan, M. Athayde, D. Santos, A. Boligon, and J.J.F.C. Rocha. 2012. Antioxidant and hepatoprotective activity of ethanolic extract of leaves of Solidago microglossa containing polyphenolic compounds. 131: 741–747.

    CAS  Google Scholar 

  58. Ito, K., Caramori, G., and I.M. Adcock. 2007. JJoP. Therapeutics E: Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. 321: 1–8.

  59. Ma, B., S.S. Athari, E. Mehrabi Nasab, and L. Zhao. 2021. JI: PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling inhibitors attenuate pathological mechanisms of allergic asthma. 44: 1895–1907.

  60. Ye, P., X.-L. Yang, X. Chen, and C. Shi. 2017. JII: Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2. 44: 168–173.

  61. Liu, Y., F. Lu, L. Kang, Z. Wang, and Y. Wang. 2017. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium. BMC Pulmonary Medicine 17: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang, Y., W. Li, Z.-Y. Su, and A.-N. Kong. 2015. TJTJonb: The complexity of the Nrf2 pathway: beyond the antioxidant response. 26: 1401–1413.

Download references

Acknowledgements

We appreciate all the colleagues who work in Institute for Medical Biology for their scientific and technical support.

Funding

This project was supported by the National Natural Science Foundation of China (Grant No. 31771274) to Jinhua Shen, the Fund for Key Laboratory Construction of Hubei Province (Grant No. 2018BFC360), and “The Fundamental Research Funds for the Central Universities,” South-Central Minzu University (Grant Number: CZQ22013).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and L.X. conceived and designed the experiments. C.P., Y.Y., and W.C. performed the experiments. C.P. and W.W. analyzed the data and generated the figures. J.S. and L.X. wrote the manuscript.

Corresponding author

Correspondence to Jinhua Shen.

Ethics declarations

Ethics Approval and Consent to Participate

All the animal experiments were approved by and performed in accordance with the guidelines of the Animal Care and Ethics Committee of South-Central Minzu University (Wuhan, China).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Changsi Peng and Lu Xue contribute equally to this work

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Xue, L., Yue, Y. et al. Duloxetine HCl Alleviates Asthma Symptoms by Regulating PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways. Inflammation 46, 2449–2469 (2023). https://doi.org/10.1007/s10753-023-01892-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01892-5

KEY WORDS

Navigation