Skip to main content

Advertisement

Log in

SOCS1 Peptidomimetic Alleviates Glomerular Inflammation in MsPGN by Inhibiting Macrophage M1 Polarization

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 06 September 2023

This article has been updated

Abstract

Mesangial proliferative glomerulonephritis (MsPGN), the most common pathological change in primary glomerulonephritis, is characterized by increased macrophage infiltration into glomeruli, which results in proinflammatory cytokine release. Macrophage infiltration and differentiation are induced by the Janus kinase 2 and signal transducer and activator of the transcription 1 (JAK2/STAT1) pathway. As a suppressor of cytokine signaling 1 (SOCS1) downregulates the immune response by inhibiting the JAK2/STAT1 pathway, we investigated whether a peptide mimicking the SOCS1 kinase inhibitor region, namely, SOCS1 peptidomimetic, protects against nephropathy. Glomerular JAK2/STAT1 pathway activation was synchronized with kidney injury in an MsPGN rat model. Rats treated with the SOCS1 peptidomimetic exhibited reduced pathological glomerular changes and lessened macrophage recruitment. Moreover, in vivo, the phosphorylation of the JAK2/STAT1 pathway was downregulated in infiltrated macrophages of glomeruli. In vitro, the SOCS1 peptidomimetic inhibited macrophage M1 polarization by suppressing JAK2/STAT1 activation. In conclusion, our study demonstrated that the SOCS1 peptidomimetic plays a protective role against pathologic glomerular changes in MsPGN by reducing macrophage infiltration and inhibiting macrophage polarizing to the M1 phenotype. SOCS1 peptidomimetic, therefore, presents a feasible therapeutic strategy to alleviate renal inflammation in MsPGN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data and materials are available when requested.

Change history

References

  1. Jin, M., Z. Yin, K. Wei, et al. 2019. Metanephric mesenchyme-derived Foxd1 mesangial precursor cells alleviate mesangial proliferative glomerulonephritis[J]. Journal of molecular medicine (Berlin, Germany) 97 (4): 553–561.

    Article  CAS  PubMed  Google Scholar 

  2. Lu, Y., Y. Mei, L. Chen, et al. 2019. The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis[J]. Cellular & molecular immunology 16 (9): 735–745.

    Article  CAS  Google Scholar 

  3. Ikezumi, Y., T. Suzuki, T. Karasawa, et al. 2010. Contrasting effects of steroids and mizoribine on macrophage activation and glomerular lesions in rat thy-1 mesangial proliferative glomerulonephritis[J]. American journal of nephrology 31 (3): 273–282.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshimura, A., K. Inui, T. Nemoto, et al. 1998. Simvastatin suppresses glomerular cell proliferation and macrophage infiltration in rats with mesangial proliferative nephritis[J]. Journal of the American Society of Nephrology : JASN 9 (11): 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  5. Shapouri-Moghaddam, A., S. Mohammadian, H. Vazini, et al. 2018. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of cellular physiology 233 (9): 6425–6440.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L.-X., S.-X. Zhang, H.-J. Wu, et al. 2019. M2b macrophage polarization and its roles in diseases[J]. Journal of leukocyte biology 106 (2): 345–358.

    Article  CAS  PubMed  Google Scholar 

  7. Hata, Y., T. Kuwabara, K. Mori, et al. 2020. Ablation of myeloid cell MRP8 ameliorates nephrotoxic serum-induced glomerulonephritis by affecting macrophage characterization through intraglomerular crosstalk[J]. Scientific reports 10 (1): 3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liao, W.-Q., S.-Y. Cui, Q. Ouyang, et al. 2018. Modulation of macrophage polarization by human glomerular mesangial cells in response to the stimuli in renal microenvironment[J]. Journal of Interferon & Cytokine Research : The Official Journal of the International Society For Interferon and Cytokine Research 38 (12): 566–577.

    Article  CAS  Google Scholar 

  9. Sica, A., and A. Mantovani. 2012. Macrophage plasticity and polarization: In vivo veritas[J]. The Journal of clinical investigation 122 (3): 787–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ikezumi, Y., L.A. Hurst, T. Masaki, et al. 2003. Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation[J]. Kidney international 63 (1): 83–95.

    Article  CAS  PubMed  Google Scholar 

  11. Rampino, T., G. Soccio, M. Gregorini, et al. 2007. Neutralization of macrophage-stimulating protein ameliorates renal injury in anti-thy 1 glomerulonephritis[J]. Journal of the American Society of Nephrology : JASN 18 (5): 1486–1496.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, J., X. Fan, X. Meng, et al. 2014. Evidence for the involvement of JAK/STAT/SOCS pathway in the mechanism of Tangshen formula-treated diabetic nephropathy[J]. Planta medica 80 (8–9): 614–621.

    CAS  PubMed  Google Scholar 

  13. Brosius, F.C., and J.C. He. 2015. JAK inhibition and progressive kidney disease[J]. Current opinion in nephrology and hypertension 24 (1): 88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owen, K.L., N.K. Brockwell, and B.S. Parker. 2019. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression[J]. Cancers 11 (12).

  15. Butturini, E., D. Boriero, A. Carcereri De Prati, et al. 2019. STAT1 drives M1 microglia activation and neuroinflammation under hypoxia[J]. Archives of biochemistry and biophysics 669: 22–30.

  16. Liu, Y., Z. Liu, H. Tang, et al. 2019. The -methyladenosine (mA)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of mRNA[J]. American journal of physiology Cell physiology 317 (4): C762–C775.

    Article  CAS  PubMed  Google Scholar 

  17. Gan, Z.-S., Q.-Q. Wang, J.-H. Li, et al. 2017. Iron Reduces M1 Macrophage polarization in RAW264.7 macrophages associated with inhibition of STAT1[J]. Mediators of inflammation 2017: 8570818.

  18. Wang, F., S. Zhang, R. Jeon, et al. 2018. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. eBioMedicine 30: 303–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding, N., Y. Wang, C. Dou, et al. 2019. Physalin D regulates macrophage M1/M2 polarization via the STAT1/6 pathway[J]. Journal of cellular physiology 234 (6): 8788–8796.

    Article  CAS  PubMed  Google Scholar 

  20. Durham, G.A., J.J.L. Williams, M.T. Nasim, et al. 2019. Targeting SOCS Proteins to control JAK-STAT signalling in disease[J]. Trends in pharmacological sciences 40 (5): 298–308.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshimura, A., M. Ito, S. Chikuma, et al. 2018. Negative regulation of cytokine signaling in immunity[J]. Cold Spring Harbor perspectives in biology 10 (7).

  22. Sharma, J., T.D. Collins, T. Roach, et al. 2021. Suppressor of cytokine signaling-1 mimetic peptides attenuate lymphocyte activation in the MRL/lpr mouse autoimmune model[J]. Scientific reports 11 (1): 6354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernal, S., L. Lopez-Sanz, L. Jimenez-Castilla, et al. 2021. Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm[J]. British Journal of Pharmacology 178 (3): 564–581.

    Article  CAS  PubMed  Google Scholar 

  24. Plummer, C.E., T. Polk, J. Sharma, et al. 2022. Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide[J]. Scientific reports 12 (1): 7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, B., J. Lin, L. Bai, et al. 2019. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β pathway[J]. Frontiers in pharmacology 10: 978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bai, J., L. Wu, X. Chen, et al. 1982. Suppressor of cytokine signaling-1/STAT1 regulates renal inflammation in mesangial proliferative glomerulonephritis models[J]. Frontiers in immunology 2018: 9.

    Google Scholar 

  27. Linossi, E.M., J.J. Babon, D.J. Hilton, et al. 2013. Suppression of cytokine signaling: The SOCS perspective[J]. Cytokine & growth factor reviews 24 (3): 241–248.

    Article  CAS  Google Scholar 

  28. Liang, Y.-B., H. Tang, Z.-B. Chen, et al. 2017. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type[J]. Molecular medicine reports 16 (5): 6405–6411.

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Sanz, L., S. Bernal, C. Recio, et al. 2018. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition[J]. Laboratory investigation; a journal of technical methods and pathology 98 (10): 1276–1290.

  30. He, C., C.-R. Yu, M.J. Mattapallil, et al. 2016. SOCS1 mimetic peptide suppresses chronic intraocular inflammatory disease (Uveitis)[J]. Mediators of inflammation 2016: 2939370.

    Article  PubMed  PubMed Central  Google Scholar 

  31. La Manna, S., L. Lopez-Sanz, S. Bernal, et al. 2020. Antioxidant effects of PS5, a peptidomimetic of suppressor of cytokine signaling 1, in experimental atherosclerosis[J]. Antioxidants (Basel, Switzerland) 9 (8).

  32. Madonna, S., C. Scarponi, N. Doti, et al. 2013. Therapeutical potential of a peptide mimicking the SOCS1 kinase inhibitory region in skin immune responses[J]. European journal of immunology 43 (7): 1883–1895.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yinghua Zhao wrote the main manuscript text. Fei Peng and Lingling Wu edited the main manuscript text. Jiayi He, Huiming Ni, and Yilun Qu validated the experiments. Xiangmei Chen provided project administration. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiangmei Chen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The email address of the second corresponding author was not captured in the published version and it should be, wulingling19860328@163.com.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Peng, F., He, J. et al. SOCS1 Peptidomimetic Alleviates Glomerular Inflammation in MsPGN by Inhibiting Macrophage M1 Polarization. Inflammation 46, 2402–2414 (2023). https://doi.org/10.1007/s10753-023-01886-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01886-3

KEY WORDS

Navigation