Skip to main content
Log in

Protection of CAPE-pNO2 Against Chronic Myocardial Ischemia by the TGF-Β1/Galectin-3 Pathway In Vivo and In Vitro

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Although it is known that caffeic acid phenethyl ester (CAPE) and its derivatives could ameliorate acute myocardial injury, their effects on chronic myocardial ischemia (CMI) were not reported. This study aimed to investigate the potential effect of caffeic acid p-nitro phenethyl ester (CAPE-pNO2, a derivative of CAPE) on CMI and underlying mechanisms. SD rats were subjected to high-fat-cholesterol-diet (HFCD) and vitamin D3, and the H9c2 cells were treated with LPS to establish CMI model, followed by the respective treatment with saline, CAPE, or CAPE-pNO2. In vivo, CAPE-pNO2 could reduce serum lipid levels and improve impaired cardiac function and morphological changes. Data of related assays indicated that CAPE-pNO2 downregulated the expression of transforming growth factor-β1 (TGF-β1) and galectin-3 (Gal-3). Besides, CAPE-pNO2 decreased collagen deposition, the number of apoptotic cardiomyocytes, and some related downstream proteins of Gal-3 in the CMI rats. Interestingly, the effects of CAPE-pNO2 on TGF-β1, Gal-3, and other proteins expressed in the lung were consistent with that in the heart. In vitro, CAPE-pNO2 could attenuate the fibrosis, apoptosis, and inflammation by activating TGF-β1/Gal-3 pathway in LPS-induced H9c2 cell. However, CAPE-pNO2-mediated cardioprotection can be eliminated when treated with modified citrus pectin (MCP, an inhibitor of Gal-3). And in comparison, CAPE-pNO2 presented stronger effects than CAPE. This study indicates that CAPE-pNO2 may ameliorate CMI by suppressing fibrosis, inflammation, and apoptosis via the TGF-β1/Gal-3 pathway in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data supporting the results of this research are available to the corresponding author on request.

Code Availability

Not applicable.

References

  1. Orford, J.L., S. Kinlay, P. Ganz, and A.P. Selwyn. 2000. Treating ambulatory ischemia in coronary disease by manipulating the cell biology of atherosclerosis. Current Atherosclerosis Reports 2 (4): 321–326.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, O.Y., Z.H. Ye, Z.Y. Cao, A. Manaenko, K. Ning, et al. 2016. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. Free Radical Biology and Medicine 90: 1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Palasubramaniam, J., X. Wang, and K. Peter. 2019. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arteriosclerosis Thrombosis and Vascular Biology 39 (8): e176–e185.

    Article  CAS  Google Scholar 

  4. Quinones, A., I. Lobach, G.A. Maduro, N.R. Smilowitz, and H.R. Reynolds. 2015. Diabetes and ischemic heart disease death in people age 25–54: A multiple-cause-of-death analysis based on over 400000 deaths from 1990 to 2008 in New York City. Clinical Cardiology 38 (2): 114–120.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Euler, G. 2015. Good and bad sides of TGF beta-signaling in myocardial infarction. Frontiers in Physiology 6: 66.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X.G., Y. Wei, J. Jiang, L. Wang, H.Y. Liang, and C.B. Lei. 2020. Effect of TGF-β1 on myocardial cell apoptosis in rats with acute myocardial infarction via MAPK signaling pathway. European Review for Medical and Pharmacological Sciences 24 (3): 1350–1356.

    PubMed  Google Scholar 

  7. Ge, Z.R., M.C. Xu, Y. Huang, C.J. Zhang, J. Lin, and C.W. Ruan. 2016. Cardioprotective effect of notoginsenoside R1 in a rabbit lung remote ischemic postconditioning model via activation of the TGF-beta 1/TAK1 signaling pathway. Experimental and Therapeutic Medicine 11 (6): 2341–2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suchal, K., S. Malik, N. Gamad, R.K. Malhotra, S.N. Goyal, et al. 2016. Mangiferin protect myocardial insults through modulation of MAPK/TGF-beta pathways. European Journal of Pharmacology 776: 34–43.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H., Y.C. Cui, K. Li, B.Q. Yang, X.P. Liu, et al. 2016. Glutamine protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions through inhibition of the transforming growth factor-beta1-Smad3 pathway. Archives of Biochemistry and Biophysics 596: 43–50.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L., and X.L. Guo. 2016. Molecular regulation of galectin-3 expression and therapeutic implication in cancer progression. Biomedicine & Pharmacotherapy 78: 165–171.

    Article  CAS  Google Scholar 

  11. Carrasco-Sanchez, F.J., and M.I. Paez-Rubio. 2014. Review of the prognostic value of galectin-3 in heart failure focusing on clinical utility of repeated testing. Molecular Diagnosis & Therapy 18 (6): 599–604.

    Article  CAS  Google Scholar 

  12. Blanda, V., U.M. Bracale, M.D. Di Taranto, and G. Fortunato. 2020. Galectin-3 in Cardiovascular Diseases. International Journal of Molecular Sciences 21 (23): 9232.

    Article  CAS  PubMed Central  Google Scholar 

  13. Li, M., Y. Yuan, K. Guo, Y. Lao, X. Huang, and L. Feng. 2020. Value of Galectin-3 in Acute Myocardial Infarction. American Journal of Cardiovascular Drugs 20 (4): 333–342.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Salam, S., and S. Hashmi. 2018. Myocardial ischemia reperfusion injury: Apoptotic, inflammatory and oxidative stress role of galectin-3. Cellular Physiology and Biochemistry 50 (3): 1123–1139.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M., K. Cheng, H. Chen, J. Tu, Y. Shen, et al. 2020. Galectin-3 knock down inhibits cardiac ischemia-reperfusion injury through interacting with bcl-2 and modulating cell apoptosis. Archives of Biochemistry and Biophysics 694: 108602.

    Article  CAS  PubMed  Google Scholar 

  16. Fulton, D.J.R., X. Li, Z. Bordan, Y. Wang, K. Mahboubi, et al. 2019. Galectin-3: A Harbinger of Reactive Oxygen Species, Fibrosis, and Inflammation in Pulmonary Arterial Hypertension. Antioxidants & Redox Signaling 31 (14): 1053–1069.

    Article  CAS  Google Scholar 

  17. Agoston-Coldea, L., S. Lupu, D. Petrovai, T. Mocan, and E. Mousseaux. 2015. Correlations between echocardiographic parameters of right ventricular dysfunction and Galectin-3 in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Medical Ultrasonography 17 (4): 487–495.

    PubMed  Google Scholar 

  18. Yoshimura, A., A. Gemma, Y. Hosoya, E. Komaki, Y. Hosomi, et al. 2003. Increased expression of the LGALS3 (Galectin-3) gene in human non-small-cell lung cancer. Genes Chromosomes & Cancer 37 (2): 159–164.

    Article  CAS  Google Scholar 

  19. Lefkowitz, D.S., R. Sandhu, A. Kim, P. Wieczorek, A. Castellano, et al. 2018. The cardioprotective potential of caffeic acid phenethyl ester (CAPE) on H2O2-induced h9c2 cell damage compared to common anti-oxidants. Faseb Journal 32 (1): 841.5–841.5.

  20. Castellano, A.J., T. Kuhn, S. Liu, K. Kucharski, J. Venditto, et al. 2016. The cardioprotective effects of caffeic acid phenethyl ester (CAPE) on myocardial ischemia/reperfusion (I/R) injury. Faseb Journal 30 (1): 1207.2–1207.2.

  21. Du, Q., C.Z. Hao, J. Gou, X.L. Li, K.L. Zou, et al. 2016. Protective effects of p-nitro caffeic acid phenethyl ester on acute myocardial ischemia-reperfusion injury in rats. Experimental and Therapeutic Medicine 11 (4): 1433–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan, L., Q.H. Xiao, L.W. Zhang, X.L. Wang, Q. Huang, et al. 2018. CAPE-pNO(2)attenuates diabetic cardiomyopathy through the NOX4/NF-kappaB pathway in STZ-induced diabetic mice. Biomedicine & Pharmacotherapy 108: 1640–1650.

    Article  CAS  Google Scholar 

  23. Li, D.J., X.L. Wang, Q. Huang, S. Li, Y. Zhou, et al. 2018. Cardioprotection of CAPE-oNO(2) against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-kappa B pathway in vivo and in vitro. Redox Biology 15: 62–73.

    Article  CAS  PubMed  Google Scholar 

  24. Preidl, R.H.M., P. Moebius, M. Weber, K. Amann, F.W. Neukam, et al. 2015. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels. Strahlentherapie und Onkologie 191 (6): 518–524.

    Article  PubMed  Google Scholar 

  25. Subramani, C., A. Rajakkannu, A. Rathinam, S. Gaidhani, and I. Raju. 2017. Anti-atherosclerotic activity of root bark of Premna integrifolia Linn in high fat diet induced atherosclerosis model rats. Journal of Pharmaceutical Analysis 7 (2): 123–128.

    Article  PubMed  Google Scholar 

  26. Zhang, H., H. Li, A. Ge, E. Guo, S. Liu, et al. 2018. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b. Biomedicine & Pharmacotherapy 101: 663–669.

    Article  CAS  Google Scholar 

  27. Xu, J.J., C. Lin, T.T. Wang, P. Zhang, Z.J. Liu, et al. 2018. Ergosterol attenuates LPS-induced myocardial injury by modulating oxidative stress and apoptosis in rats. Cellular Physiology and Biochemistry 48 (2): 583–592.

    Article  CAS  PubMed  Google Scholar 

  28. Han, C.K., Y.C. Tien, D.J.Y. Hsieh, T.J. Ho, C.H. Lai, et al. 2017. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environmental Toxicology 32 (3): 754–763.

    Article  CAS  PubMed  Google Scholar 

  29. Gou, J., X.F. Yao, H. Tang, K.L. Zou, Y.J. Liu, et al. 2016. Absorption properties and effects of caffeic acid phenethyl ester and its p-nitro-derivative on P-glycoprotein in Caco-2 cells and rats. Pharmaceutical Biology 54 (12): 296–2967.

    Article  CAS  Google Scholar 

  30. Zhang, Z.H., D.D. Zhang, M.M. Dou, Z.B. Li, J. Zhang, et al. 2016. Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice. Biomedicine & Pharmacotherapy 84: 1350–1358.

    Article  CAS  Google Scholar 

  31. Severino, P., A. D’Amato, M. Pucci, F. Infusino, L.I. Birtolo, et al. 2020. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. International Journal of Molecular Sciences 21 (9): 3167.

    Article  CAS  PubMed Central  Google Scholar 

  32. Rezende, P.C., F.F. Ribas, C.V. Serrano, and W. Hueb. 2019. Clinical significance of chronic myocardial ischemia in coronary artery disease patients. Journal of Thoracic Disease 11 (3): 1005–1015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neri, M., I. Riezzo, N. Pascale, C. Pomara, and E. Turillazzi. 2017. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators of Inflammation 7018393.

  34. Caetano, J., and J.D. Alves. 2015. Heart rate and cardiovascular protection. European Journal of Internal Medicine 26 (4): 217–222.

    Article  PubMed  Google Scholar 

  35. Pascual Izco, M., R. Ramírez-Carracedo, I. Hernández Navarro, Á. Osorio Ruiz, B. Castejón Navarro, et al. 2020. Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial. Journal of Cardiology 27 (1): 62–71.

    Article  Google Scholar 

  36. Sclarovsky, S. 2009. Upgrading the electrocardiogram in the 21st century. Journal of Electrocardiology 42 (1): 35–38.

    Article  PubMed  Google Scholar 

  37. Frampton, J., J.T. Devries, T.D. Welch, and B.J. Gersh. 2020. Modern management of ST-segment elevation myocardial infarction. Current Problems in Cardiology 45 (3): 100393.

    Article  PubMed  Google Scholar 

  38. Gramatikov, B., and V. Iyer. 2015. Intra-QRS spectral changes accompany ST segment changes during episodes of myocardial ischemia. Journal of Electrocardiology 48 (1): 115–122.

    Article  PubMed  Google Scholar 

  39. Liu, G.W., C. Ma, H.L. Yang, and P.Y. Zhang. 2017. Transforming growth factor beta and its role in heart disease. Experimental and Therapeutic Medicine 13 (5): 2123–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang, Q., X.L. Li, M.Y. Yang, T. Fernando, and Z. Wan. 2018. Galectin-3 in patients with coronary heart disease and atrial fibrillation. Clinica Chimica Acta 478: 166–170.

    Article  CAS  Google Scholar 

  41. Nguyen, M.N., Y. Su, D. Vizi, L. Fang, A.H. Ellims, W.B. Zhao, et al. 2018. Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Scientific Reports 8: 523.

    Article  CAS  Google Scholar 

  42. Wang, X.Y., Y.L. Wang, J.B. Zhang, X. Guan, M.G. Chen, Y.M. Li, et al. 2017. Galectin-3 contributes to vascular fibrosis in monocrotaline-induced pulmonary arterial hypertension rat model. Journal of Biochemical and Molecular Toxicology 31 (5): e21879.

    Article  CAS  Google Scholar 

  43. Xiao, M., M. Zhang, M. Bie, X. Wang, J. Guo, et al. 2020. Galectin-3 induces atrial fibrosis by activating the TGF-β1/Smad pathway in patients with atrial fibrillation. Cardiology 145 (7): 446–455.

    Article  CAS  PubMed  Google Scholar 

  44. MacKinnon, A.C., M.A. Gibbons, S.L. Farnworth, H. Leffler, U.J. Nilsson, et al. 2012. Regulation of transforming growth factor-beta 1-driven lung fibrosis by galectin-3. American Journal of Respiratory and Critical Care Medicine 185 (5): 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, X., X. Tang, J.P. Lu, and S. Yuan. 2018. Therapeutic inhibition of galectin-3 improves cardiomyocyte apoptosis and survival during heart failure. Molecular Medicine Reports 17 (3): 4106–4112.

    CAS  PubMed  Google Scholar 

  46. Kitazume-Taneike, R., M. Taneike, S. Omiya, T. Misaka, K. Nishida, et al. 2019. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications 515 (3): 442–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, G.R., C. Zhang, H.X. Yang, J.H. Sun, Y. Zhang, et al. 2020. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomedicine & Pharmacotherapy 126: 110071.

    Article  CAS  Google Scholar 

  48. Yamamoto, M., N. Kondo, M. Tashiro, K. Orihashi, K. Hanazaki, et al. 2018. Delayed production of reactive nitrogen species induces lung congestion after myocardial ischemia reperfusion. Journal of the American College of Surgeons 227 (4): 113.

    Article  Google Scholar 

  49. Zhan, L.Y., Y. Zhang, W.T. Su, Q.X. Zhang, R. Chen, et al. 2018. The roles of autophagy in acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. Journal of Diabetes Research 1–9.

Download references

Funding

This work was financially supported by the Fundamental research funds for the central university, China (SWU021003), Shanxi Zhaoyi Biological Co. Ltd., China (SWU2013130), and Skagen Animal Health Products (Shangqiu) Co., Ltd., China (2021073).

Author information

Authors and Affiliations

Authors

Contributions

Li Z, Zhang L, and Li B designed the project; Zhang L, Wan Q, and Han Y performed the experiments; Zhang L, Wan Q, Li Z, Li B, and Zhou Q wrote the manuscripts; Zhang L analyzed and interpreted data; and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Zhubo Li or Boheng Li.

Ethics declarations

Ethics Approval

All the animal protocols were consistent with the National Institutes of Health (NIH) guidelines and approved by the Ethical Committee for Animals of Southwest University.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Zhang, L., Zhou, Q. et al. Protection of CAPE-pNO2 Against Chronic Myocardial Ischemia by the TGF-Β1/Galectin-3 Pathway In Vivo and In Vitro. Inflammation 45, 1039–1058 (2022). https://doi.org/10.1007/s10753-021-01600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01600-1

KEY WORDS

Navigation