Skip to main content

Advertisement

Log in

LASSBio-596: a New Pre-clinical Candidate for Rheumatoid Arthritis?

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Pain and inflammatory disorders are significant health problems because of prevalence and associated disabilities. In this context, LASSBio-596 is a hybrid compound able to modulate TNF-α and phosphodiesterases 4 and 5, exhibiting an anti-inflammatory effect in the pulmonary inflammatory model. Aiming at a better description of the activities of LASSBio-596, we initially conducted nociception tests (acetic acid-induced abdominal writhing, glutamate, and formalin-induced nociception and hot plate test) and later inflammatory tests (acute, peritonitis; and chronic, arthritis) that directed us to this last one. In the abdominal writhing test, there was a dose-dependent inhibition, whose response occurred at the maximum dose (50 mg/kg, p.o.), used in the subsequent tests. LASSBio-596 also inhibited nociception induced by chemical (glutamate by 31.9%; and formalin, in both phases, 1st phase: 25.7%; 2nd phase: 23.9%) and thermal agents (hotplate, by increased latency for pain at two different times). These effects were independent of the motor function, legitimated in rotarod. As there was a response in the inflammatory component of nociception, we performed the peritonitis test, in which migration was inhibited by LASSBio-596 by 39.9%. As the inflammatory process is present in autoimmune diseases, we also performed the arthritis test. LASSBio-596 reduced paw edema from the 15th day to the 21st day of treatment (no liver changes and with fewer paw injuries). In addition, LASSBio-596 decreased serum levels of TNF-α by 67.1%. These data demonstrated the antinociceptive effect of LASSBio-596 and reinforces its anti-inflammatory property (i.e., RA), amplifying the therapeutic potential of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Mota, Paulo Henrique, Thais dos Santos, Alves de Lima, Flavia Rupolo Berach, and Ana Carolina Basso. Schmitt. 2020. Impacto da dor musculoesquelética na incapacidade funcional. Fisioterapia e Pesquisa 27: 85–92. https://doi.org/10.1590/1809-2950/19006327012020.

    Article  Google Scholar 

  2. Raja, Srinivasa N., Daniel B. Carr, Milton Cohen, Nanna B. Finnerup, Herta Flor, Stephen Gibson, Francis J. Keefe, et al. 2020. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 161: 1976–1982. https://doi.org/10.1097/j.pain.0000000000001939.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woodell-May, Jennifer E., and Sven D. Sommerfeld. 2020. Role of inflammation and the immune system in the progression of osteoarthritis. Journal of Orthopaedic Research 38: 253–257. https://doi.org/10.1002/jor.24457.

    Article  PubMed  Google Scholar 

  4. Smolen, Josef S., Daniel Aletaha, Anne Barton, Gerd R. Burmester, Paul Emery, Gary S. Firestein, Arthur Kavanaugh, et al. 2018. Rheumatoid arthritis. Nature Reviews Disease Primers 4: 18001. https://doi.org/10.1038/nrdp.2018.1.

    Article  PubMed  Google Scholar 

  5. Bjarnason, Ingvar, Carmelo Scarpignato, Erik Holmgren, Michael Olszewski, Kim D. Rainsford, and Angel Lanas. 2018. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154: 500–514. https://doi.org/10.1053/j.gastro.2017.10.049.

    Article  CAS  Google Scholar 

  6. Ripa, Lena, Karl Edman, Matthew Dearman, Goran Edenro, Ramon Hendrickx, Victoria Ullah, Hui Fang Chang, et al. 2018. Discovery of a novel oral glucocorticoid receptor modulator (AZD9567) with improved side effect profile. Journal of Medicinal Chemistry 61: 1785–1799. https://doi.org/10.1021/acs.jmedchem.7b01690.

    Article  CAS  PubMed  Google Scholar 

  7. Deguine, Jacques. 2018. New flavors in immunomodulation. Cell 173: 1553–1555. https://doi.org/10.1016/j.cell.2018.05.049.

    Article  CAS  PubMed  Google Scholar 

  8. Zimmermann Franco, and Danielle Cristina. 2017. Investigação dos potenciais anti-inflamatório e antitumoral de análogos do resveratrol. Universidade Federal de Juiz de Fora.

  9. Guantai, Eric, and Kelly Chibale. 2011. How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials? Malaria Journal 10: S2. https://doi.org/10.1186/1475-2875-10-S1-S2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lima, Lídia. M., Paulo Castro, Alexandre L. Machado, Alberto M. Carlos, Claire Lugnier Fraga, Vera Lúcia Gonçalves De. Moraes, and Eliezer J. Barreiro. 2002. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorganic and Medicinal Chemistry 10: 3067–3073. https://doi.org/10.1016/S0968-0896(02)00152-9.

    Article  CAS  PubMed  Google Scholar 

  11. Mazzoccoli, Luciano, Silvia H. Cadoso, Giovanni W. Amarante, Marcus V.N., De Souza, Robert Domingues, Marco A. Machado, Mauro V. De Almeida, and Henrique C. Teixeira. 2012. Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10. Biomedicine and Pharmacotherapy 66: 323–329. https://doi.org/10.1016/j.biopha.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  12. Campos, H.S., D.G. Xisto, M.B.G. Oliveira, I. Teixeira, E.M. Negri, T. Mauad, D. Carnielli, et al. 2006. Protective effects of phosphodiesterase inhibitors on lung function and remodeling in a murine model of chronic asthma. Brazilian Journal of Medical and Biological Research 39: 283–287. https://doi.org/10.1590/S0100-879X2006000200016.

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira, Vinícius Rosa., Giovanna Marcella Cavalcante. Carvalho, Natália Vasconcelos. Casquilho, Maria Diana Moreira-Gomes, Raquel Moraes Soares, F.O. Sandra Maria, Lidia Moreira Azevedo, Eliezer Jesus Lima, Christina Maeda Barreiro, and Takiya, and Walter Araujo Zin. 2018. Lung and liver responses to 1- and 7-day treatments with LASSBio-596 in mice subchronically intoxicated by microcystin-LR. Toxicon 141: 1–8. https://doi.org/10.1016/j.toxicon.2017.10.029.

    Article  CAS  PubMed  Google Scholar 

  14. Padilha, Gisele A., Isabela Henriques, Miquéias Lopes-Pacheco, Soraia C. Abreu, Milena V. Oliveira, Marcelo M. Morales, Lidia M. Lima, et al. 2015. Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Frontiers in Physiology 6: 267. https://doi.org/10.3389/fphys.2015.00267.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rocco, P.R.M., D.P. Momesso, R.C. Figueira, H.C. Ferreira, R.A. Cadete, A. Légora-Machado, V.L.G. Koatz, L.M. Lima, E.J. Barreiro, and W.A. Zin. 2003. Therapeutic potential of a new phosphodiesterase inhibitor in acute lung injury. European Respiratory Journal 22: 20–27. https://doi.org/10.1183/09031936.03.00108603.

    Article  CAS  Google Scholar 

  16. Collier, H.O.J., L.C. Dinneen, Christine A. Johnson, and C. Schneider. 1968. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology and Chemotherapy 32: 295–310. https://doi.org/10.1111/j.1476-5381.1968.tb00973.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beirith, Alessandra, Adair R S. Santos, and João. B. Calixto. 2002. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Research 924: 219–228. https://doi.org/10.1016/S0006-8993(01)03240-1.

    Article  CAS  PubMed  Google Scholar 

  18. Hunskaar, Steinar, and Kjell Hole. 1987. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 30: 103–114. https://doi.org/10.1016/0304-3959(87)90088-1.

    Article  CAS  PubMed  Google Scholar 

  19. Kuraishi, Y., Y. Harada, S. Aratani, M. Satoh, and H. Takagi. 1983. Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: The differences in mechanical and thermal algesic tests. Brain Research 273: 245–252. https://doi.org/10.1016/0006-8993(83)90849-1.

    Article  CAS  PubMed  Google Scholar 

  20. Dunham, N.W., and T.S. Miya. 1957. A note on a simple apparatus for detecting neurological deficit in rats and mice **College of Pharmacy, University of Nebraska, Lincoln 8. Journal of the American Pharmaceutical Association (Scientific ed.) 46: 208–209. https://doi.org/10.1002/jps.3030460322.

    Article  CAS  Google Scholar 

  21. Doherty, N.S., P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich, and N.L. Schrader. 1985. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2. Prostaglandins 30: 769–789. https://doi.org/10.1016/0090-6980(85)90006-1.

    Article  CAS  PubMed  Google Scholar 

  22. Winter, Charles A., Edwin A. Risley, and George W. Nuss. 1962. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine 111: 544–547. https://doi.org/10.3181/00379727-111-27849.

    Article  CAS  PubMed  Google Scholar 

  23. Akramas, Laimis, Laima Leonaviciene, Ruta Bradunaite, Audrius Vasiliauskas, Irena Dumalakiene, Danguole Zabulyte, Teresa Normantiene, Irena Jonauskiene, and Dalia Vaitkiene. 2017. Antiinflammatory effect of herbal preparations on adjuvant arthritis in rats. Turkish Journal of Veterinary and Animal Sciences 41: 748–756. https://doi.org/10.3906/vet-1704-16.

    Article  CAS  Google Scholar 

  24. Melchert, Magda, and Alan List. 2007. The thalidomide saga. International Journal of Biochemistry and Cell Biology 39: 1489–1499. https://doi.org/10.1016/j.biocel.2007.01.022.

    Article  CAS  PubMed  Google Scholar 

  25. Ito, Takumi, Hideki Ando, Takayuki Suzuki, Toshihiko Ogura, Kentaro Hotta, Yoshimasa Imamura, Yuki Yamaguchi, and Hiroshi Handa. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327: 1345–1350. https://doi.org/10.1126/science.1177319.

    Article  CAS  PubMed  Google Scholar 

  26. Basbaum, Allan I., Diana M. Bautista, Grégory. Scherrer, and David Julius. 2009. Cellular and molecular mechanisms of pain. Cell 139: 267–284. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le Bars, D., M. Gozariu, and S.W. Cadden. 2001. Animal models of nociception. Pharmacological Reviews 53: 597–652. https://doi.org/10.1002/9783527611942.ch9.

    Article  PubMed  Google Scholar 

  28. Ribeiro, Ronaldo A., Mariana L. Vale, Sara M. Thomazzi, Adriana B.P.. Paschoalato, Steve Poole, Sergio H. Ferreira, and Fernando Q. Cunha. 2000. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. European Journal of Pharmacology 387: 111–118. https://doi.org/10.1016/S0014-2999(99)00790-6.

    Article  CAS  PubMed  Google Scholar 

  29. Duarte, I.D.G., M. Nakamura, and S.H. Ferreira. 1988. Participation of the sympathetic system in acetic acid-induced writhing in mice. Brazilian Journal of Medical and Biological Research 21: 341–343.

    CAS  PubMed  Google Scholar 

  30. Ikeda, Yuri, Akinori Ueno, Hiroaki Naraba, and Sachiko Oh-Ishi. 2001. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sciences 69: 2911–2919. https://doi.org/10.1016/S0024-3205(01)01374-1.

    Article  CAS  PubMed  Google Scholar 

  31. Pavao-De-Souza, Gabriela F., Ana C. Zarpelon, Giovana C. Tedeschi, Sandra S. Mizokami, Joice S. Sanson, Thiago M. Cunha, Sérgio. H. Ferreira, Fernando Q. Cunha, Rubia Casagrande, and Waldiceu A. Verri. 2012. Acetic acid- and phenyl-p-benzoquinone-induced overt pain-like behavior depends on spinal activation of MAP kinases, PI 3K and microglia in mice. Pharmacology Biochemistry and Behavior 101: 320–328. https://doi.org/10.1016/j.pbb.2012.01.018.

    Article  CAS  Google Scholar 

  32. Casquilho, Natália V., Giovanna M.C. Carvalho, João L.C.R. Alves, Mariana N. Machado, Raquel M. Soares, Sandra M.F.O. Azevedo, Lidia M. Lima, et al. 2011. LASSBio 596 per os avoids pulmonary and hepatic inflammation induced by microcystin-LR. Toxicon 58: 195–201. https://doi.org/10.1016/j.toxicon.2011.05.018.

    Article  CAS  PubMed  Google Scholar 

  33. Oliveira, Vinícius Rosa., Mariana Barcellos Avila, Giovanna Marcella Cavalcante. Carvalho, F.O. Sandra Maria, Lidia Moreira Azevedo, Eliezer Jesus Lima, Alysson Roncally Barreiro, and Carvalho, and Walter Araujo Zin. . 2015. Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 94: 29–35. https://doi.org/10.1016/j.toxicon.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  34. Silva, Johnatas Dutra, Gisele Pena De. Oliveira, Cynthia Dos Santos, Carla Cristina Samary, Gisele De Araujo, Araujo Padilha, Costa E. Fernando, Silva Filho, Rosilane Taveira Da. Silva, et al. 2016. Respiratory and systemic effects of LASSBio596 plus surfactant in experimental acute respiratory distress syndrome. Cellular Physiology and Biochemistry 38: 821–835. https://doi.org/10.1159/000443037.

    Article  CAS  PubMed  Google Scholar 

  35. Kerstein, Patrick C., Donato del Camino, Magdalene M. Moran, and Cheryl L. Stucky. 2009. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Molecular Pain 5. BioMed Central: 1744–8069–5–19. https://doi.org/10.1186/1744-8069-5-19.

  36. McCall, W. D., Kimberly D. Tanner, and Jon D. Levine. 1996. Formalin induces biphasic activity in C-fibers in the rat. Neuroscience Letters 208. Elsevier: 45–48. https://doi.org/10.1016/0304-3940(96)12552-0.

  37. Fischer, Michael, Giancarlo Carli, Patrick Raboisson, and Peter Reeh. 2014. The interphase of the formalin test. Pain 155: 511–521. https://doi.org/10.1016/j.pain.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  38. Granados-Soto, Vinicio, Rosario Alonso-López, Raquel Asomoza-Espinosa, Marcelo O. Rufino, Lucia D. Gomes-Lopes, and Sérgio. H. Ferreira. 2001. Participation of COX, IL-1β and TNFα in formalin-induced inflammatory pain. Proceedings of the Western Pharmacology Society 44: 15–17.

    CAS  PubMed  Google Scholar 

  39. Ko, Young Kwon, Ann Misun Youn, Boo Hwi Hong, Yoon Hee Kim, Yong Sup Shin, Po Soon Kang, Keon Jung Yoon, and Won Hyung Lee. 2012. Antinociceptive effect of phenyl N-tert-butylnitrone, a free radical scavenger, on the rat formalin test. Korean Journal of Anesthesiology 62: 558–564. https://doi.org/10.4097/kjae.2012.62.6.558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Casquilho, Natália V., Maria Diana Moreira-Gomes, Clarissa B. Magalhães, Renata T. Okuro, Victor Hugo Ortenzi, Emanuel K. Feitosa-Lima, Lidia M. Lima, et al. 2018. Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicon 144: 75–82. https://doi.org/10.1016/j.toxicon.2018.02.008.

    Article  CAS  PubMed  Google Scholar 

  41. Carvalho, Giovanna M.C.., Vinícius R. Oliveira, Raquel M. Soares, Sandra M.F.O.. Azevedo, Lidia M. Lima, Eliezer J. Barreiro, Samuel S. Valença, Paulo H.N.. Saldiva, Débora. S. Faffe, and Walter A. Zin. 2010. Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR? Toxicon 56: 604–612. https://doi.org/10.1016/j.toxicon.2010.06.005.

    Article  CAS  PubMed  Google Scholar 

  42. Miotla, Jadwiga M., Mauro M. Teixeira, and Paul G. Hellewell. 1998. Suppression of acute lung injury in mice by an inhibitor of phosphodiesterase type 4. American Journal of Respiratory Cell and Molecular Biology 18: 411–420. https://doi.org/10.1165/ajrcmb.18.3.2913.

    Article  CAS  PubMed  Google Scholar 

  43. Araujo, G.L., A.E.D. Vieira, E.J. Barreiro, L.M. Lima, C.N. Cardoso, N.F. Emiliano, M.T. Martins, et al. 2014. Toxicological in vitro and subchronic evaluation of LASSBio-596. Food and Chemical Toxicology 73: 148–156. https://doi.org/10.1016/j.fct.2014.07.037.

    Article  CAS  PubMed  Google Scholar 

  44. Calabresi, Emanuele, Fiorella Petrelli, Angelo Francesco Bonifacio, Ilaria Puxeddu, and Alessia Alunno. 2018. One year in review 2018: Pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology 36: 175–184.

    PubMed  Google Scholar 

  45. McNamee, Kay, Richard Williams, and Michael Seed. 2015. Animal models of rheumatoid arthritis: How informative are they? European Journal of Pharmacology 759: 278–286. https://doi.org/10.1016/j.ejphar.2015.03.047.

    Article  CAS  PubMed  Google Scholar 

  46. Van Der Linden, M.W., S. Van Der Bij, P. Welsing, E.J. Kuipers, and R.M.C. Herings. 2009. The balance between severe cardiovascular and gastrointestinal events among users of selective and non-selective non-steroidal anti-inflammatory drugs. Annals of the Rheumatic Diseases 68: 668–673. https://doi.org/10.1136/ard.2007.087254.

    Article  CAS  PubMed  Google Scholar 

  47. Franchimont, D. 2004. Overview of the actions of glucocorticoids on the immune response: A good model to characterize new pathways of immunosuppression for new treatment strategies. Annals of the New York Academy of Sciences 1024: 124–137. https://doi.org/10.1196/annals.1321.009.

    Article  CAS  PubMed  Google Scholar 

  48. Kirkham, Bruce W., Arthur Kavanaugh, and Kristian Reich. 2014. Interleukin-17A: A unique pathway in immune-mediated diseases: Psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141: 133–142. https://doi.org/10.1111/imm.12142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, Eugene Y., and Kamal D. Moudgil. 2017. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 98: 87–96. https://doi.org/10.1016/j.cyto.2017.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Yang, Chen chen Han, Dongqian Cui, Yifan Li, Yang Ma, and Wei Wei. 2017. Is macrophage polarization important in rheumatoid arthritis? International Immunopharmacology 50. Elsevier: 345–352. https://doi.org/10.1016/j.intimp.2017.07.019.

  51. Almeida, De., Mauro Vieira, Francisco Martins Teixeira, Marcus Vinicius Nora De. Souza, Giovanni Wilson Amarante, Caio César De Souza. Alves, Sílvia Helena. Cardoso, Ana Márcia. Mattos, Ana Paula Ferreira, and Henrique Couto Teixeira. 2007. Thalidomide analogs from diamines: Synthesis and evaluation as inhibitors of TNF-α production. Chemical and Pharmaceutical Bulletin 55: 223–226. https://doi.org/10.1248/cpb.55.223.

    Article  PubMed  Google Scholar 

  52. Costa, Victor Soares, and Cavalcante. . 2015. High anti-inflammatory activity and low toxicity of thalidomide analogs. Medicinal Chemistry 5: 334–339. https://doi.org/10.4172/2161-0444.1000282.

    Article  CAS  Google Scholar 

  53. Alexandre-Moreira, Magna S., Christina M. Takiya, Luciana B. De Arruda, Bernardo Pascarelli, Raquel N. Gomes, Hugo C. Castro, Faria Neto, Lídia. M. Lima, and Eliezer J. Barreiro. 2005. LASSBio-468: A new achiral thalidomide analogue which modulates TNF-α and NO production and inhibits endotoxic shock and arthritis in an animal model. International Immunopharmacology 5: 485–494. https://doi.org/10.1016/j.intimp.2004.10.017.

    Article  CAS  PubMed  Google Scholar 

  54. Li, Ping, Ying Zheng, and Xin Chen. 2017. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Frontiers in Pharmacology 8: 460. https://doi.org/10.3389/fphar.2017.00460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research that led to these results received funding from CNPQ and FAPERJ under the terms of agreements no. 573.564/2008–6 and no. E-26/170.020/2008, respectively, in addition to student support through CAPES/FAPEAL.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Conceptualization: Max Denisson Mauricio Viana and Magna Suzana Alexandre Moreira; formal analysis, investigation, and writing of the original draft: Max Denisson Mauricio Viana; review and editing: Geraldo José da Silva Neto; experimental collaborators: Alyne Almeida de Lima, Suellen Maria Albuquerque da Silva, Anderson Brandão Leite, Elane Conceição dos Santos, Ênio José Bassi, Eliane Aparecida Campesatto, Aline Cavalcanti de Queiroz, Eliezer Jesus Barreiro, Lidia Moreira Lima, and Magna Suzana Alexandre Moreira; supervision: Eliezer Jesus Barreiro, Lidia Moreira Lima, and Magna Suzana Alexandre Moreira. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Max Denisson Maurício Viana.

Ethics declarations

Ethics Approval

The experiments were performed after the approval by Ethics Committee-UFAL for animal handling (Protocol #041/2017).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, M.D.M., de Lima, A.A., da Silva Neto, G.J. et al. LASSBio-596: a New Pre-clinical Candidate for Rheumatoid Arthritis?. Inflammation 45, 528–543 (2022). https://doi.org/10.1007/s10753-021-01564-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01564-2

KEY WORDS

Navigation