Skip to main content

Advertisement

Log in

Exosomes Secreted by Mesenchymal Stem Cells Induce Immune Tolerance to Mouse Kidney Transplantation via Transporting LncRNA DANCR

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells induce kidney transplant tolerance by increasing regulatory T (Treg) cells. Bone marrow mesenchymal stem cell exosomes (BMMSC-Ex) promote Treg cell differentiation. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is expressed in BMMSCs and can be encapsulated in exosomes. We aimed to explore the role of DANCR in BMMSC-Ex in immune tolerance after kidney transplantation and related mechanism. The isogenic/allograft kidney transplantation mouse model was established, and levels of serum creatinine (SCr) were determined. Hematoxylin–eosin staining was conducted to detect the inflammation, and immunohistochemistry was performed to detect the infiltration of CD4+ T cells. Levels of IFN-γ, IL-17, and IL-2 were examined by ELISA. Flow cytometry was conducted to determine Treg cells. In the allograft group, the inflammatory response was severe, CD4+ T cell infiltration, SCr levels, and plasma rejection-related factors were up-regulated, while injection of BMMSC-Ex reversed the results. BMMSC-Ex increased Treg cells in kidney transplantation mice. Interference with DANCR reversed the promoting effect of BMMSC-Ex on Treg cell differentiation. DANCR bound to SIRT1, promoted ubiquitination and accelerated its degradation. The injection of BMMSC-Ex (after interference with DANCR) promoted SIRT1 levels, inflammatory response, CD4+ T cell infiltration, SCr levels, and plasma rejection related factors’ expression, while Treg cells were decreased. LncRNA DANCR in BMMSC-Ex promoted Treg cell differentiation and induced immune tolerance of kidney transplantation by down-regulating SIRT1 expression in CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Mehta, R., S. Bhusal, P. Randhawa, P. Sood, A. Cherukuri, C. Wu, C. Puttarajappa, W. Hoffman, N. Shah, M. Mangiola, et al. 2018. Short-term adverse effects of early subclinical allograft inflammation in kidney transplant recipients with a rapid steroid withdrawal protocol. American Journal of Transplantation 18 (7): 1710–1717.

    Article  CAS  Google Scholar 

  2. Xu, Q.X., X.Y. Qiu, Z. Jiao, M. Zhang, and M.K. Zhong. 2018. FOXP3 rs3761549 polymorphism predicts long-term renal allograft function in patients receiving cyclosporine-based immunosuppressive regimen. Gene 644: 93–100.

    Article  CAS  Google Scholar 

  3. Georgiev, P., L.M. Charbonnier, and T.A. Chatila. 2019. Regulatory T cells: The many faces of Foxp3. Journal of Clinical Immunology 39 (7): 623–640.

    Article  Google Scholar 

  4. Liao, T., Y. Xue, D. Zhao, S. Li, M. Liu, J. Chen, D.D. Brand, H. Zheng, Y. Zhang, S.G. Zheng, et al. 2017. In vivo attenuation of antibody-mediated acute renal allograft rejection by ex vivo TGF-β-induced CD4(+)Foxp3(+) regulatory T cells. Frontiers in Immunology 8: 1334.

    Article  Google Scholar 

  5. He, Y., S. Zhou, H. Liu, B. Shen, H. Zhao, K. Peng, and X. Wu. 2015. Indoleamine 2,3-dioxgenase transfected mesenchymal stem cells induce kidney allograft tolerance by increasing the production and function of regulatory T cells. Transplantation 99 (9): 1829–1838.

    Article  CAS  Google Scholar 

  6. Pang, X.L., Z.G. Wang, L. Liu, Y.H. Feng, J.X. Wang, H.C. Xie, X.L. Yang, J.F. Li, and G.W. Feng. 2019. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation. Aging (Albany NY) 11 (20): 8911–8924.

    Article  CAS  Google Scholar 

  7. Yu, X., C. Huang, B. Song, and Y. Xiao. 2013. Fang M, Feng J, Wang P: CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cellular Immunology 285 (1–2): 62–68.

    Article  CAS  Google Scholar 

  8. Aiello, S., F. Rocchetta, L. Longaretti, S. Faravelli, M. Todeschini, L. Cassis, F. Pezzuto, S. Tomasoni, N. Azzollini, M. Mister, et al. 2017. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports 7 (1): 11518.

    Article  Google Scholar 

  9. Ji, L., L. Bao, Z. Gu, Q. Zhou, Y. Liang, Y. Zheng, Y. Xu, X. Zhang, and X. Feng. 2019. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunologic Research 67 (4–5): 432–442.

    Article  CAS  Google Scholar 

  10. Li, Y., F. Wang, R. Guo, Y. Zhang, D. Chen, X. Li, W. Tian, X. Xie, and Z. Jiang. 2019. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life 71 (9): 1284–1292.

    Article  CAS  Google Scholar 

  11. Li, P., M. Kaslan, S.H. Lee, J. Yao, and Z. Gao. 2017. Progress in exosome isolation techniques. Theranostics 7 (3): 789–804.

    Article  CAS  Google Scholar 

  12. Jin, L., H. Fu, J. Quan, X. Pan, T. He, J. Hu, Y. Li, H. Li, Y. Yang, J. Ye, et al. 2017. Overexpression of long non-coding RNA differentiation antagonizing non-protein coding RNA inhibits the proliferation, migration and invasion and promotes apoptosis of renal cell carcinoma. Molecular Medicine Reports 16 (4): 4463–4468.

    Article  CAS  Google Scholar 

  13. Zhao, H., B. Chen, Z. Li, B. Wang, and L. Li. 2020. Long Noncoding RNA DANCR suppressed lipopolysaccharide-induced septic acute kidney injury by regulating miR-214 in HK-2 cells. Medical Science Monitor 26:e921822.

  14. Zhang, J., Z. Tao, and Y. Wang. 2018. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. International Journal of Molecular Medicine 41 (1): 213–219.

    CAS  PubMed  Google Scholar 

  15. Karlsson, O., R.S. Rodosthenous, C. Jara, K.J. Brennan, R.O. Wright, A.A. Baccarelli, and R.J. Wright. 2016. Detection of long non-coding RNAs in human breastmilk extracellular vesicles: Implications for early child development. Epigenetics 11 (10): 721–729.

    Article  Google Scholar 

  16. Chadha, S., L. Wang, W.W. Hancock, and U.H. Beier. 2019. Sirtuin-1 in immunotherapy: A Janus-headed target. Journal of Leukocyte Biology 106 (2): 337–343.

    Article  CAS  Google Scholar 

  17. Heyn, J., B. Luchting, L.C. Hinske, M. Hübner, S.C. Azad, and S. Kreth. 2016. miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain. Journal of Neuroinflammation 13 (1): 248.

    Article  Google Scholar 

  18. Levine, M.H., Z. Wang, H. Xiao, J. Jiao, L. Wang, T.R. Bhatti, W.W. Hancock, and U.H. Beier. 2016. Targeting Sirtuin-1 prolongs murine renal allograft survival and function. Kidney International 89 (5): 1016–1026.

    Article  CAS  Google Scholar 

  19. Yang, R., H. Huang, S. Cui, Y. Zhou, T. Zhang, and Y. Zhou. 2020. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death & Disease 11 (7): 603.

    Article  CAS  Google Scholar 

  20. Kou, X., X. Xu, C. Chen, M.L. Sanmillan, T. Cai, Y. Zhou, C. Giraudo, A. Le, and S. Shi. 2018. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Science Translational Medicine 10(432).

  21. Roman, Madeline G., Lisa C. Flores, Geneva M. Cunningham, Christie Cheng, Sara Dube, Colton Allen, Holly Van Remmen, Yidong Bai, Thomas L. Saunders, and Yuji Ikeno. 2020. Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice. Aging Pathobiology and Therapeutics 2: 20–31.

    Article  CAS  Google Scholar 

  22. Wu, K., H. Liou, C. Lee, and C. Lin. 2019. Down-regulation of natural resistance-associated macrophage protein-1 (Nramp1) is associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP )-induced α-synuclein accumulation and neurotoxicity. Neuropathology and Applied Neurobiology 45 (2): 157–173.

    Article  CAS  Google Scholar 

  23. Ge, Wen-qing, Pan Hao, Yu.-hua Huang, Jian-quan Hou, Pu. Jin-xian, and Liang-liang Wang. 2018. miR-539 Inhibits Inflammation in Renal Transplant Iscemia-Reperfusion Injury via Blocking the MyD88/NF-κB Pathway. Clinical Surgery Research Communications 2 (2): 14–21.

    Article  Google Scholar 

  24. Hachisu, Mitsugu, Masahiro Hashizume, Hisashi Kawai, Hirohiko Hirano, Motonaga Kojima, Yoshinori Fujiwara, Shuichi Obuchi, Mari Kogo, Masayuki Ohbayashi, Noriko Koyama, et al. 2020. Finding prodromal frailty in a community-dwelling healthy older cohort by survey of BDNF or hand grip strength classified by BMI. Aging Pathobiology and Therapeutics 2 (3): 155–161.

    Article  Google Scholar 

  25. Azuma, H., Y. Isaka, X. Li, T. Hünig, T. Sakamoto, H. Nohmi, Y. Takabatake, M. Mizui, Y. Kitazawa, N. Ichimaru, et al. 2008. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts. American Journal of Transplantation 8 (10): 2004–2014.

    Article  CAS  Google Scholar 

  26. Cosenza, S., K. Toupet, M. Maumus, P. Luz-Crawford, O. Blanc-Brude, C. Jorgensen, and D. Noël. 2018. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8 (5): 1399–1410.

    Article  CAS  Google Scholar 

  27. Xu, Xin, Ting Wei, Weijie Zhong, Zhigang Zhu, Feng Liu, and Qingshan Li. 2020. IL-17 regulates the expression of major histocompatibility complex II and VEGF in DLBCL mice on tumor growth. Aging Pathobiology and Therapeutics 2 (2): 96–100.

    Article  CAS  Google Scholar 

  28. Cornell, L.D., R.N. Smith, and R.B. Colvin. 2008. Kidney transplantation: Mechanisms of rejection and acceptance. Annual Review of Pathology 3: 189–220.

    Article  CAS  Google Scholar 

  29. Copsel, S., D. Wolf, K.V. Komanduri, and R.B. Levy. 2019. The promise of CD4(+)FoxP3(+) regulatory T-cell manipulation in vivo: Applications for allogeneic hematopoietic stem cell transplantation. Haematologica 104 (7): 1309–1321.

    Article  CAS  Google Scholar 

  30. Ge, W., J. Jiang, J. Arp, W. Liu, B. Garcia, and H. Wang. 2010. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 90 (12): 1312–1320.

    Article  CAS  Google Scholar 

  31. Atianand, M.K., D.R. Caffrey, and K.A. Fitzgerald. 2017. Immunobiology of long noncoding RNAs. Annual Review of Immunology 35: 177–198.

    Article  CAS  Google Scholar 

  32. Yang, X., Y. Lun, H. Jiang, X. Liu, Z. Duan, S. Xin, and J. Zhang. 2018. SIRT1-regulated abnormal acetylation of FOXP3 induces regulatory T-cell function defect in Hashimoto’s thyroiditis. Thyroid 28 (2): 246–256.

    Article  CAS  Google Scholar 

  33. Dong, Y.J., N. Liu, Z. Xiao, T. Sun, S.H. Wu, W.X. Sun, Z.G. Xu, and H. Yuan. 2014. Renal protective effect of sirtuin 1. Journal of Diabetes Research 2014:843786.

  34. Schug, T.T., Q. Xu, H. Gao, A. Peres-da-Silva, D.W. Draper, M.B. Fessler, A. Purushotham, and X. Li. 2010. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and Cellular Biology 30 (19): 4712–4721.

    Article  CAS  Google Scholar 

  35. Takeda-Watanabe, A., M. Kitada, K. Kanasaki, and D. Koya. 2012. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochemical and Biophysical Research Communications 427 (1): 191–196.

    Article  CAS  Google Scholar 

  36. Khader, A., W.L. Yang, M. Kuncewitch, A. Jacob, J.M. Prince, J.R. Asirvatham, J. Nicastro, G.F. Coppa, and P. Wang. 2014. Sirtuin 1 activation stimulates mitochondrial biogenesis and attenuates renal injury after ischemia-reperfusion. Transplantation 98 (2): 148–156.

    Article  CAS  Google Scholar 

  37. Fan, H., H.C. Yang, L. You, Y.Y. Wang, W.J. He, and C.M. Hao. 2013. The histone deacetylase SIRT1 contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney International 83 (3): 404–413.

    Article  CAS  Google Scholar 

  38. Gao, R., J. Chen, Y. Hu, Z. Li, S. Wang, S. Shetty, and J. Fu. 2014. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One 9(6):e98909.

  39. Vasko, R., S. Xavier, J. Chen, C.H. Lin, B. Ratliff, M. Rabadi, J. Maizel, R. Tanokuchi, F. Zhang, J. Cao, et al. 2014. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: Relevance to fibrosis of vascular senescence. Journal of the American Society of Nephrology 25 (2): 276–291.

    Article  CAS  Google Scholar 

  40. Hasegawa, K., S. Wakino, P. Simic, Y. Sakamaki, H. Minakuchi, K. Fujimura, K. Hosoya, M. Komatsu, Y. Kaneko, T. Kanda, et al. 2013. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nature Medicine 19 (11): 1496–1504.

    Article  CAS  Google Scholar 

  41. He, W., Y. Wang, M.Z. Zhang, L. You, L.S. Davis, H. Fan, H.C. Yang, A.B. Fogo, R. Zent, R.C. Harris, et al. 2010. Sirt1 activation protects the mouse renal medulla from oxidative injury. The Journal of Clinical Investigation 120 (4): 1056–1068.

    Article  CAS  Google Scholar 

  42. Beier, U.H., L. Wang, T.R. Bhatti, Y. Liu, R. Han, G. Ge, and W.W. Hancock. 2011. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Molecular and Cellular Biology 31 (5): 1022–1029.

    Article  CAS  Google Scholar 

  43. Fairchild, R.L. 2016. Juicing Tregs in situ to improve kidney allograft outcomes. Kidney International 89 (5): 976–978.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the foundation of Medical Science and Technology of Henan Province, No. LHGJ20200046.

Author information

Authors and Affiliations

Authors

Contributions

XW and TY put forward the concept of the study, designed the study, prepared the manuscript, and contributed to the statistical analysis. ZW and JW contributed to the data acquisition. XT and GC contributed to the quality control of data and algorithms. YG analyzed the data and interpretation. FS edited the manuscript. TY put forward the concept of the study, contributed to the data analysis and interpretation, and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianzhong Yan.

Ethics declarations

Ethics Approval and Consent to Participate

Our study was approved by Zhengzhou University People’s Hospital. The experimental procedures were approved by the Medical Ethics review committee of Zhengzhou University People’s Hospital.

Consent for Publication

The study was undertaken with the patient’s consent.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Z., Wang, J. et al. Exosomes Secreted by Mesenchymal Stem Cells Induce Immune Tolerance to Mouse Kidney Transplantation via Transporting LncRNA DANCR. Inflammation 45, 460–475 (2022). https://doi.org/10.1007/s10753-021-01561-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01561-5

KEY WORDS

Navigation