Skip to main content

Advertisement

Log in

Cross-reactivity of Haemophilus influenzae type a and b polysaccharides: molecular modeling and conjugate immunogenicity studies

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Haemophilus influenzae is a leading cause of meningitis disease and mortality, particularly in young children. Since the introduction of a licensed conjugate vaccine (targeting the outer capsular polysaccharide) against the most prevalent serotype, Haemophilus influenzae serotype b, the epidemiology of the disease has changed and Haemophilus influenzae serotype a is on the rise, especially in Indigenous North American populations. Here we apply molecular modeling to explore the preferred conformations of the serotype a and b capsular polysaccharides as well as a modified hydrolysis resistant serotype b polysaccharide. Although both serotype b and the modified serotype b have similar random coil behavior, our simulations reveal some differences in the polysaccharide conformations and surfaces which may impact antibody cross-reactivity between these two antigens. Importantly, we find significant conformational differences between the serotype a and b polysaccharides, indicating a potential lack of cross-reactivity that is corroborated by immunological data showing little recognition or killing between heterologous serotypes. These findings support the current development of a serotype a conjugate vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data has been disclosed.

Code availability

Not applicable.

Abbreviations

BSA:

Bovine serum albumin

CPS:

Capsular polysaccharide

ELISA:

Enzyme-linked immunosorbent assay

Glc:

Glucose

Hia:

H. influenzae Type a

Hib:

H. influenzae Type b

HibMe:

H. influenzae Type b methylated at O2 of ribose

PRP:

Polyribosylribitolphosphate; Ribf: ribose/ribofuranose

Rib-ol:

Ribitol phosphate

RU:

Repeating unit

SBA:

Serum bactericidal assay

References

  1. Tsang, R.S.W., Ulanova, M.: The changing epidemiology of invasive Haemophilus influenzae disease: Emergence and global presence of serotype a strains that may require a new vaccine for control. Vaccine (2017). https://doi.org/10.1016/j.vaccine.2017.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barreto, L., Cox, A.D., Ulanova, M., Bruce, M.G., Tsang, R.: The emerging Haemophilus influenzae serotype a infection and a potential vaccine: Implementation science in action. Can. Commun. Dis. Rep. (2017). https://doi.org/10.14745/ccdr.v43i05a01

  3. Slack, M.P.E.: Long Term Impact of Conjugate Vaccines on Haemophilus influenzae Meningitis: Narrative Review. Microorganisms (2021). https://doi.org/10.3390/microorganisms9050886

    Article  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization: Defeating Meningitis by 2030: global road map. https://www.who.int/initiatives/defeating-meningitis-by-2030. Accessed 03 May 2021

  5. Kenne, L., Lindberg, B.: The Polysaccharides. In: Aspinall, G.O. (ed.) The polysaccharides, pp. 287–363. Academic Press (1983)

  6. Ulanova, M.: Invasive Haemophilus influenzae Serotype a Disease in the H. influenzae Serotype b Conjugate Vaccine Era: Where Are We Going?. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa868

  7. Zwahlen, A., Kroll, J.S., Rubin, L.G., Moxon, E.R.: The molecular basis of pathogenicity in Haemophilus influenzae: comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microb. Pathog. (1989). https://doi.org/10.1016/0882-4010(89)90058-2

    Article  PubMed  Google Scholar 

  8. Cox, A.D., Williams, D., Cairns, C., Michael, F.S., Fleming, P., Vinogradov, E., Arbour, M., Masson, L., Zou, W.: Investigating the candidacy of a capsular polysaccharide-based glycoconjugate as a vaccine to combat Haemophilus influenzae type a disease: a solution for an unmet public health need. Vaccine (2017). https://doi.org/10.1016/j.vaccine.2017.09.055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ulanova, M., Tsang, M.D., Raymond S.W, Dr: Haemophilus influenzae serotype a as a cause of serious invasive infections. Lancet Infect. Dis. (2014). https://doi.org/10.1016/S1473-3099(13)70170-1

    Article  PubMed  Google Scholar 

  10. Cox, A.D., Lee, R.K., Ulanova, M., Bruce, M.G., Tsang, R.: Proceedings of a workshop to discuss the epidemiology of invasive Haemophilus influenzae disease with emphasis on serotype a and b in the Americas, 2019. Vaccine (2021). https://doi.org/10.1016/j.vaccine.2020.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verez-Bencomo, V., Fernandez-Santana, V., Hardy, E., Toledo, M.E., Rodríguez, M.C., Heynngnezz, L., Rodriguez, A., Baly, A., Herrera, L., Izquierdo, M.: A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science (2004). https://doi.org/10.1126/science.1095209

    Article  PubMed  Google Scholar 

  12. Zarei, A.E., Almehdar, H.A., Redwan, E.M.: Hib Vaccines: Past, Present, and Future Perspectives. J. Immunol. Res. (2016). https://doi.org/10.1155/2016/7203587

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cox, A.D., Barreto, L., Ulanova, M., Bruce, M.G., Tsang, R.: Implementation science: Developing a vaccine for Haemophilus influenzae serotype a: Proceedings of a workshop. Can. Commun. Dis. Rep. (2017). https://doi.org/10.14745/ccdr.v43i05a02

  14. Shoukat, A., Van Exan, R., Moghadas, S.M.: Cost-effectiveness of a potential vaccine candidate for Haemophilus influenzae serotype ‘a.’ Vaccine (2018). https://doi.org/10.1016/j.vaccine.2018.01.047

    Article  PubMed  Google Scholar 

  15. Lemercinier, X., Jones, C.: An NMR Spectroscopic Identity Test for the Control of the Capsular Polysaccharide from Haemophilus influenzae Type b. Biologicals (2000). https://doi.org/10.1006/biol.2000.0255

    Article  PubMed  Google Scholar 

  16. Egan, W., Schneerson, R., Werner, K.E., Zon, G.: Structural studies and chemistry of bacterial capsular polysaccharides. Investigations of phosphodiester-linked capsular polysaccharides isolated from Haemophilus influenzae types a, b, c, and f: NMR spectroscopic identification and chemical modification of end groups and the nature of base-catalyzed hydrolytic depolymerization. J. Am. Chem. Soc. (1982). https://doi.org/10.1021/ja00374a033

  17. Ovodov, Y.: Bacterial capsular antigens. Structural patterns of capsular antigens. Biochemistry (2006). https://doi.org/10.1134/S000629790609001X

    Article  PubMed  Google Scholar 

  18. Sturgess, A.W., Rush, K., Charbonneau, R.J., Lee, J.I., West, D.J., Sitrin, R.D., Hennessey, J.P., Jr.: Haemophilus influenzae type b conjugate vaccine stability: catalytic depolymerization of PRP in the presence of aluminum hydroxide. Vaccine (1999). https://doi.org/10.1016/S0264-410X(98)00337-5

    Article  PubMed  Google Scholar 

  19. Emmadi, M., Lisboa, M.P., Monnanda, B, Sharavathi, G., Parameswarappa, S., Oestreich, S., Nieto-Garcia, O., Seeberger, P.H., Von Bonin, A., Pereira, C.L.: A Liquid Stable Biological Active Semi-Synthetic Glycoconjugate Vaccine against Haemophilus influenzae type b

  20. Seeberger, P.H., Pereira, C.L.: Stable hydrolysis-resistant synthetic polyribosylribitolphosphate derivatives as a vaccine against Haemophilus influenzae type B, USA, Patent Number: US20190153015A1 (2019).

  21. Hennessey Jr, J.P., Costantino, P., Talaga, P., Beurret, M., Ravenscroft, N., Alderson, M.R., Zablackis, E., Prasad, A.K., Frasch, C.: Lessons learned and future challenges in the design and manufacture of glycoconjugate vaccines. In: Prasad, A.K. (ed.) Carbohydrate-Based Vaccines: From Concept to Clinic, pp. 323–385. ACS Publications (2018)

  22. Baek, J.Y., Geissner, A., Rathwell, D.C.K., Meierhofer, D., Pereira, C.L., Seeberger, P.H.: A modular synthetic route to size-defined immunogenic Haemophilus influenzae b antigens is key to the identification of an octasaccharide lead vaccine candidate. Chem. Sci. (2018). https://doi.org/10.1039/c7sc04521b

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuttel, M.M., Ravenscroft, N.: The Role of Molecular Modeling in Predicting Carbohydrate Antigen Conformation and Understanding Vaccine Immunogenicity. In: Prasad Krishna, A. (ed.) Carbohydrate-Based Vaccines: From Concept to Clinic, pp. 139–173. ACS Publications (2018)

  24. Byrd, R.A., Egan, W., Summers, M.F., Bax, A.: New N.M.R.-spectroscopic approaches for structural studies of polysaccharides: Application to the Haemophilus influenzae type a capsular polysaccharide. Carbohydr. Res. (1987). https://doi.org/10.1016/0008-6215(87)80043-5

  25. Branefors-Helander, P., Kenne, L., Lindberg, B., Petersson, K., Unger, P.: Structural studies of two capsular polysaccharides elaborated by different strains of Haemophilus influenzae type e. Carbohydr. Res. (1981). https://doi.org/10.1016/S0008-6215(00)84602-9

    Article  PubMed  Google Scholar 

  26. Branefors-Helander, P., Kenne, L., Lindberg, B., Petersson, K., Unger, P.: Structural studies of the capsular polysaccharide elaborated by Haemophilus influenzae type d. Carbohydr. Res. (1981). https://doi.org/10.1016/S0008-6215(00)80674-6

    Article  PubMed  Google Scholar 

  27. Hoog, C., Laaksonen, A., Widmalm, G.: Molecular dynamics simulations of the phosphodiester-linked repeating units of the Haemophilus influenzae types c and f capsular polysaccharides. J. Phys. Chem. B (2001). https://doi.org/10.1021/jp0041555

    Article  Google Scholar 

  28. Abdelhameed, A.S., Adams, G.G., Morris, G.A., Almutairi, F.M., Duvivier, P., Conrath, K., Harding, S.E.: A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate. Sci. Rep. (2016). https://doi.org/10.1038/srep22208

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maestre, M., Pérez, C.S.: Conformational analysis of diribosylribitol phosphate by NMR spectroscopy and molecular dynamics. Magn. Reson. Chem. (2000). https://doi.org/10.1002/(SICI)1097-458X(200002)38:23.0.CO;2-L

    Article  Google Scholar 

  30. Hlozek, J., Owen, S., Ravenscroft, N., Kuttel, M.M.: Molecular Modeling of the Shigella flexneri Serogroup 3 and 5 O-Antigens and Conformational Relationships for a Vaccine Containing Serotypes 2a and 3a. Vaccines (2020). https://doi.org/10.3390/vaccines8040643

    Article  PubMed  PubMed Central  Google Scholar 

  31. Richardson, N.I., Ravenscroft, N., Arato, V., Oldrini, D., Micoli, F., Kuttel, M.M.: Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation. Vaccines (2021). https://doi.org/10.3390/vaccines9050432

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kabat, E.A.: The nature of an antigenic determinant. J. Immunol. (1966)

  33. Ravenscroft, N., Averani, G., Bartoloni, A., Berti, S., Bigio, M., Carinci, V., Costantino, P., D’Ascenzi, S., Giannozzi, A., Norelli, F., Pennatini, C., Proietti, D., Ceccarini, C., Cescutti, P.: Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines. Vaccine (1999). https://doi.org/10.1016/S0264-410X(99)00092-4

    Article  PubMed  Google Scholar 

  34. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. (2005). https://doi.org/10.1002/jcc.20289

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schulten, K.: Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. (2007). https://doi.org/10.1002/jcc.20829

    Article  PubMed  Google Scholar 

  36. Guvench, O., Greene, S.N., Kamath, G., Brady, J.W., Venable, R.M., Pastor, R.W., Mackerell, A.D., Jr.: Additive empirical force field for hexopyranose monosaccharides. J. Comput. Chem. (2008). https://doi.org/10.1002/jcc.21004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guvench, O., Hatcher, E., Venable, R.M., Pastor, R.W., MacKerell, A.D., Jr.: CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J. Comput. Chem. (2009). https://doi.org/10.1021/ct900242e

    Article  Google Scholar 

  38. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. (1983). https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  39. Kuttel, M.M., Jackson, G.E., Mafata, M., Ravenscroft, N.: Capsular polysaccharide conformations in pneumococcal serotypes 19F and 19A. Carbohydr. Res. (2015). https://doi.org/10.1016/j.carres.2014.12.013

    Article  PubMed  Google Scholar 

  40. Kuttel, M.M., Ståhle, J., Widmalm, G.: CarbBuilder: Software for building molecular models of complex oligo-and polysaccharide structures. J. Comput. Chem. (2016). https://doi.org/10.1002/jcc.24428

    Article  PubMed  Google Scholar 

  41. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  PubMed  Google Scholar 

  42. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. (1993). https://doi.org/10.1063/1.464397

    Article  Google Scholar 

  43. Van Gunsteren, W.F., Berendsen, H.J.: A leap-frog algorithm for stochastic dynamics. Mol. Simul. (1988). https://doi.org/10.1080/08927028808080941

    Article  Google Scholar 

  44. Grossfield, A., Zuckerman, D.M.: Quantifying uncertainty and sampling quality in biomolecular simulations. Annu. Rep. Comput. Chem. (2009). https://doi.org/10.1016/S1574-1400(09)00502-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hunter, J.D.: Matplotlib: A 2D Graphics Environment (2007). https://doi.org/10.1109/MCSE.2007.55

  46. Haltiwanger, R.S.: Symbol nomenclature for glycans (SNFG). Glycobiology (2016). https://doi.org/10.1093/glycob/cww005

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neelamegham, S., Aoki-Kinoshita, K., Bolton, E., Frank, M., Lisacek, F., Lütteke, T., O’Boyle, N., Packer, N.H., Stanley, P., Toukach, P.: Updates to the symbol nomenclature for glycans guidelines. Glycobiology (2019). https://doi.org/10.1093/glycob/cwz045

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hlozek, J., Kuttel, M.M., Ravenscroft, N.: Conformations of Neisseria meningitidis serogroup A and X polysaccharides: The effects of chain length and O-acetylation. Carbohydr. Res. (2018). https://doi.org/10.1016/j.carres.2018.06.007

    Article  PubMed  Google Scholar 

  49. Gracia Luis: WMC PhysBio Clustering (2012). Accessed June 2020

  50. Cross, S., Kuttel, M.M., Stone, J.E., Gain, J.E.: Visualisation of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model. (2009). https://doi.org/10.1016/j.jmgm.2009.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krone, M., Stone, J.E., Ertl, T., Schulten, K.: Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories., Vienna Austria (2012).

  52. Zhang, S., Sella, M., Sianturi, J., Priegue, P., Shen, D., Seeberger, P.H.: Discovery of oligosaccharide antigens for semi-synthetic glycoconjugate vaccine leads against Streptococcus suis serotypes 2, 3, 9 and 14. Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202103990

    Article  Google Scholar 

  53. Soeters, H.M., Oliver, S.E., Plumb, I.D., Blain, A.E., Zulz, T., Simons, B.C., Barnes, M., Farley, M.M., Harrison, L.H., Lynfield, R.: Epidemiology of Invasive Haemophilus influenzae Serotype a Disease—United States, 2008–2017. Clin. Infect. Dis. (2020). https://doi.org/10.1093/cid/ciaa875

    Article  Google Scholar 

  54. Soeters, H.M., Blain, A., Pondo, T., Doman, B., Farley, M.M., Harrison, L.H., Lynfield, R., Miller, L., Petit, S., Reingold, A.: Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 2009–2015. Clin. Infect. Dis. (2018). https://doi.org/10.1093/cid/ciy187

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Computations were performed using facilities provided by the University of Cape Town’s ICTS High Performance Computing team: http://hpc.uct.ac.za. The authors wish to thank the staff of the NRC-Ottawa animal facility who carry out all animal work following NRC’s Human Health Therapeutics Research Centre’s animal care committee approved procedures that fall under the Canadian Council of Animal Care jurisdiction

Funding

This research was partially funded by the University of Cape Town (MSc scholarship for N.I.R).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.M.K and N.R; methodology, M.M.K; software, M.M.K and N.I.R; validation, M.M.K and N.I.R; investigation, N.I.R., F.S.M and C.C; resources, M.M.K. and N.R; data curation, M.M.K; writing—original draft preparation, A.C. and N.I.R.; writing—review and editing, M.M.K and N.R; supervision, A.C, M.M.K and N.R; visualization, M.M.K and N.I.R.; funding acquisition, M.M.K and N.R.

Corresponding author

Correspondence to Neil Ravenscroft.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Glycoconjugate vaccines: classic and novel approaches

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, N.I., Kuttel, M.M., Michael, F.S. et al. Cross-reactivity of Haemophilus influenzae type a and b polysaccharides: molecular modeling and conjugate immunogenicity studies. Glycoconj J 38, 735–746 (2021). https://doi.org/10.1007/s10719-021-10020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10020-0

Keywords

Navigation