Skip to main content
Log in

Spacetime Superoscillations and the Relativistic Quantum Potential

  • Brief Report
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In a recent paper (Berry in Eur J Phys 42: 015401, 2020), the boundaries of superoscillatory regions (the regions where a function oscillates faster than its fastest Fourier component) of waves described by the Helmholtz equation in a uniform medium were related to zeros of the quantum potential, arising in the Madelung formulation of quantum mechanics. We generalize this result, showing that the relativistic counterpart, which is, essentially, a Klein-Gordon equation, exhibits the same behaviour, but in spacetime, giving rise to anomalous values for the local mass (instead of local momenta, in the classical case). This amounts to the generalization of the condition for superoscillations from the magnitude of a vector, to the norm of a four-vector. For a photon, boundaries of superoscillatory regions are surfaces on which the photon’s trajectory is locally light-like, separating time-like and space-like regions, which correspond to real and imaginary local mass, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926). https://doi.org/10.1103/PhysRev.28.1049

    Article  ADS  Google Scholar 

  2. Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. Harper Perennial Modern Classics, New York (1958)

    Google Scholar 

  3. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. A 40, 322 (1927). https://doi.org/10.1007/BF01400372

    Article  MATH  Google Scholar 

  4. Bohr, N.: Causality and complementarity. Philos. Sci. 4, 289 (1937). https://doi.org/10.1086/286465

    Article  Google Scholar 

  5. Popper, K.R.: Quantum mechanics without “the observer’’. In: Bunge, M. (ed.) Quantum Theory and Reality, pp. 7–44. Springer, Berlin (1967). https://doi.org/10.1007/978-3-642-88026-1_2

    Chapter  Google Scholar 

  6. De Broglie, L.: The reinterpretation of wave mechanics. Found. Phys. 1, 5 (1970). https://doi.org/10.1007/BF00708650

    Article  ADS  Google Scholar 

  7. Nelson, E.: Review of stochastic mechanics. J. Phys.: Conf. Ser. 361, 012011 (2012). https://doi.org/10.1088/1742-6596/361/1/012011

    Article  Google Scholar 

  8. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984). https://doi.org/10.1007/BF01015734

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hashmi, F.A., et al.: Two-state vector formalism and quantum interference. J. Phys. A: Math. Theor. 49, 345302 (2016). https://doi.org/10.1088/1751-8113/49/34/345302

    Article  MathSciNet  MATH  Google Scholar 

  10. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996). https://doi.org/10.1007/BF02302261

    Article  MathSciNet  MATH  Google Scholar 

  11. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, Milton Park (1995). https://doi.org/10.4324/9780203980385

    Book  MATH  Google Scholar 

  12. Wigner, E.P.: The place of consciousness in modern physics. In: Mehra, J. (ed.) Philosophical Reflections and Syntheses, pp. 261–267. Springer, Berlin (1995). https://doi.org/10.1007/978-3-642-78374-6_21

    Chapter  Google Scholar 

  13. Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese (1988). https://doi.org/10.1007/BF00869434

    Article  MathSciNet  Google Scholar 

  14. Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002). https://doi.org/10.1103/PhysRevA.65.022305

    Article  ADS  MathSciNet  Google Scholar 

  15. Home, D., Whitaker, M.A.: Ensemble interpretations of quantum mechanics. A modern perspective. Physics Reports 210, 223 (1992). https://doi.org/10.1016/0370-1573(92)90088-H

    Article  ADS  MathSciNet  Google Scholar 

  16. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986). https://doi.org/10.1103/PhysRevD.34.470

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28, 581 (1996). https://doi.org/10.1007/BF02105068

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ney, A., Albert, D.Z.: The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  19. Zinkernagel, H.: Aesthetic motivation in quantum physics: past and present. Ann. Phys. 534, 2200283 (2022)

    Article  MathSciNet  Google Scholar 

  20. Berry, M.V.: Superoscillations and the quantum potential. Eur. J. Phys. 42, 015401 (2020). https://doi.org/10.1088/1361-6404/abc5fd

    Article  Google Scholar 

  21. Pinkard, T.P.: Hegel’s Dialectic: The Explanation of Possibility. Temple University Press, Philadelphia (1988). https://doi.org/10.2307/2185197

    Book  Google Scholar 

  22. Heisenberg, W.: The Physical Principles of the Quantum Theory. Courier Corporation, North Chelmsford (1949)

    MATH  Google Scholar 

  23. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. I. Phys. Rev. (1952). https://doi.org/10.1103/PhysRev.85.166

    Article  MathSciNet  MATH  Google Scholar 

  24. Born, M.: Statistical interpretation of quantum mechanics. Science 122, 675 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement, vol. 15. Princeton University Press, Princeton (2014)

    Google Scholar 

  26. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 134, B1410 (1964). https://doi.org/10.1103/PhysRev.134.B1410

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351

    Article  ADS  Google Scholar 

  28. Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11 (1990). https://doi.org/10.1103/PhysRevA.41.11

    Article  ADS  MathSciNet  Google Scholar 

  29. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, New Princeton University Press, Princeton (2018)

    Book  Google Scholar 

  30. Berry, M., Zheludev, N., Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J., Rogers, E.T., Qin, F., Hong, M., et al.: Roadmap on superoscillations. J. Opt. 21, 053002 (2019). https://doi.org/10.1088/2040-8986/ab0191

    Article  ADS  Google Scholar 

  31. Berry, M.: Five momenta. Eur. J. Phys. 34, 1337 (2013). https://doi.org/10.1088/0143-0807/34/6/1337

    Article  MATH  Google Scholar 

  32. Barnett, S.M., Berry, M.: Superweak momentum transfer near optical vortices. J. Opt. 15, 125701 (2013). https://doi.org/10.1088/2040-8978/15/12/125701

    Article  ADS  Google Scholar 

  33. Berry, M., Shukla, P.: Semiclassical superoscillations: interference, evanescence, post-wkb. New J. Phys. 23, 113014 (2021). https://doi.org/10.1088/1367-2630/ac2bd7

    Article  ADS  MathSciNet  Google Scholar 

  34. de Broglie, L.: Interpretation of quantum mechanics by the double solution theory. In: Annales de la Fondation Louis de Broglie, vol. 12. Fondation Louis de Broglie, Paris, pp. 1–23

  35. Berry, M.: Superluminal speeds for relativistic random waves. J. Phys. A: Math. Theor. 45, 185308 (2012). https://doi.org/10.1088/1751-8113/45/18/185308

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Berry, M., Fishman, S.: Escaping superoscillations. J. Phys. A: Math. Theor. 51, 025205 (2017). https://doi.org/10.1088/1751-8121/aa9b50

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Bloch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, Y. Spacetime Superoscillations and the Relativistic Quantum Potential. Found Phys 53, 46 (2023). https://doi.org/10.1007/s10701-023-00680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-023-00680-3

Keywords

Navigation