Skip to main content
Log in

Laws of Nature as Constraints

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The laws of nature have come a long way since the time of Newton: quantum mechanics and relativity have given us good reasons to take seriously the possibility of laws which may be non-local, atemporal, ‘all-at-once,’ retrocausal, or in some other way not well-suited to the standard dynamical time evolution paradigm. Laws of this kind can be accommodated within a Humean approach to lawhood, but many extant non-Humean approaches face significant challenges when we try to apply them to laws outside the time evolution picture. Thus for proponents of non-Humean approaches to lawhood there is a clear need for a novel non-Humean account which is capable of accommodating these sorts of laws. In this paper we propose such an account, characterizing lawhood in terms of constraints, which are understood as a form of modal structure. We demonstrate that our proposed realist account can indeed accommodate a large variety of laws outside the time evolution paradigm, and describe some possible applications to important philosophical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. There are in fact interesting nuances in the different ways no-signalling is manifested in each of these theories, but these will not concern us here

  2. To define ontological priority, we first define ontological dependence by saying that A ontologically depends on B if A depends for its existence on B: for example, sets depend for their existence on their members. In many cases (indeed, some say all cases) ontological dependence seems to be asymmetric—A ontologically depends on B but not vice versa—and in such cases we say that B is ontologically prior to A [87, 88]. To enliven this rather abstract language, ontological priority may be described metaphorically as specifying the order in which God would have to create things to make a world like ours [89].

  3. We reinforce that ‘locality’ as referenced in Bell’s theorem is not the same as the mathematical principle of ‘locality’ employed in quantum field theory; Bell’s theorem says nothing about the latter.

References

  1. Kastner, R.E.: Is there really “retrocausation’’ in time-symmetric approaches to quantum mechanics? AIP Conf. Proc. 1841(1), 020002 (2017)

    Article  Google Scholar 

  2. Menzies, P., Beebee, H.: Counterfactual theories of causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Summer 2020th edn. Metaphysics Research Lab, Stanford University, Stanford (2020)

  3. Hempel, C.G., et al.: Aspects of Scientific Explanation. Free Press, New York (1965)

    Google Scholar 

  4. Butterfield, J.: Defining determinism. In: Craig, E. (ed.) Routledge Encyclopedia of Philosophy. Taylor and Francis Group, Boca Raton (2005)

    Google Scholar 

  5. Goddard, L.: The paradoxes of confirmation and the nature of natural laws. Philos. Q. 27(107), 97–113 (1977)

    Article  MathSciNet  Google Scholar 

  6. Dorst, C.: Towards a best predictive system account of laws of nature. Br. J. Philos. Sci. 70(3), 877–900 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hobart, R.E.: Free will as involving determination and inconceivable without it. Mind 43(169), 1–27 (1934)

    Article  Google Scholar 

  8. Wharton, K.: The universe is not a computer. In: Aguirre, F.B., Merali, G. (eds.) Questioning the Foundations of Physics, pp. 177–190. Springer, Berlin (2015)

    Chapter  Google Scholar 

  9. Smolin, L.: The unique universe. Phys. World 22(06), 21 (2009)

    Article  Google Scholar 

  10. Brizard, A.J.: An Introduction to Lagrangian Mechanics. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  11. Adlam, E.: Spooky action at a temporal distance. Entropy 20(1), 41 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum Mechanics and Path Integrals. Dover Books on Physics, Dover Publications, New York (2010)

    MATH  Google Scholar 

  13. Hartle, J.B.: The spacetime approach to quantum mechanics. Vistas Astron. 37, 569–583 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  14. Sorkin, R.D.: Quantum dynamics without the wavefunction. J. Phys. A 40, 3207–3221 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wigner, E.P.: Events, laws of nature, and invariance principles. Science 145(3636), 995–999 (1964)

    Article  ADS  Google Scholar 

  16. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)

    MATH  Google Scholar 

  17. Ringström, H.: The Cauchy Problem in General Relativity. European Mathematical Society, Zürich (2009)

    Book  MATH  Google Scholar 

  18. Foures-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88(1), 141–225 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rovelli, C.: Loop quantum gravity. Living Rev. Relat. 11(1), 5 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Wallace, D.: Observability, redundancy and modality for dynamical symmetry transformations (2019)

  21. Spekkens, R.W.: The paradigm of kinematics and dynamics must yield to causal structure (2012)

  22. Aharonov, Y., Vaidman, L.: The Two-State Vector Formalism of Quantum Mechanics, pp. 369–412. Springer, Berlin (2002)

    MATH  Google Scholar 

  23. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647–687 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kent, A.: Solution to the Lorentzian quantum reality problem. Phys. Rev. A 90(1), 012107 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wharton, K.: A new class of retrocausal models. Entropy 20(6), 410 (2018)

    Article  ADS  Google Scholar 

  26. Sutherland, R.: Causally symmetric bohm model (2006). arXiv:quant-ph/0601095

  27. Price, H.: Does time-symmetry imply retrocausality? How the quantum world says “maybe’’? Stud. Hist. Philos. Sci. B 43(2), 75–83 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Leifer, M., Pusey, M.: Is a time symmetric interpretation of quantum theory possible without retrocausality? Proc. R. Soc. A 473, 20160607 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Evans, P.W., Price, H., Wharton, K.B.: New slant on the EPR-bell experiment. Br. J. Philos. Sci. 64(2), 297–324 (2013)

    Article  MathSciNet  Google Scholar 

  30. Masanes, L., Renner, R., Christandl, M., Winter, A., Barrett, J.: Full security of quantum key distribution from no-signaling constraints. IEEE Trans. Inf. Theory 60(8), 4973–4986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pawlowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature 461, 1101–1104 (2009)

    Article  ADS  Google Scholar 

  32. Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. Lond. Ser. A 465, 59–69 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Toner, B., Verstraete, F.: Monogamy of Bell correlations and Tsirelson’s bound (2006). arXiv:quant-ph/0611001

  34. Scarani, V., Iblisdir, S., Gisin, N., Acín, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84(1) (2011)

  36. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010)

    Article  ADS  Google Scholar 

  37. Rohrlich, D., Popescu, S.: Nonlocality as an axiom for quantum theory (1995). arXiv:quant-ph/9508009

  38. Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012

  39. Barrett, J.: Information processing in generalized probabilistic theories (2005). arXiv:quant-ph/0508211

  40. Barnum, H., Barrett, J., Orloff Clark, L., Leifer, M., Spekkens, R., Stepanik, N., Wilce, A., Wilke, R.: Entropy and information causality in general probabilistic theories. N. J. Phys. 12(3), 033024 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Masanes, L., Müller, M.: A derivation of quantum theory from physical requirements. N. J. Phys. 13(6), 063001 (2011)

    Article  MATH  Google Scholar 

  42. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. N. J. Phys. 13(11), 113036 (2011)

    Article  MATH  Google Scholar 

  43. Colbeck, R.: Quantum and relativistic protocols for secure multi-party computation. PhD thesis (2009)

  44. Adlam, E., Kent, A.: Device-independent relativistic quantum bit commitment. Phys. Rev. A 92(2), 022315 (2015)

    Article  ADS  MATH  Google Scholar 

  45. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-sided device-independent QKD and position-based cryptography from monogamy games. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology—EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 609–625. Springer, Berlin (2013)

    Chapter  Google Scholar 

  46. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  47. Thorne, K.S.: Closed timelike curves. In: 13th Conference on General Relativity and Gravitation (GR-13), pp. 295–315 (1993)

  48. Earman, John.: Recent work on time travel. (1995)

  49. Deutsch, D., Marletto, C.: Constructor theory of information. Proc. R. Soc. A 471(2174), 20140540 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Brown, H.R., Myrvold, W., Uffink, J.: Boltzmann’s h-theorem, its discontents, and the birth of statistical mechanics. Stud. Hist. Philos. Sci. B 40(2), 174–191 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Valente, G.: The approach towards equilibrium in Lanford’s theorem. Eur. J. Philos. Sci. 4(3), 309–335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Filomeno, A.: Typicality of dynamics and the laws of nature. In: Soto, C. (ed.) Current Debates in Philosophy of Science. In Honor of Roberto Torretti. Synthese Library Series. Springer, New York (2021)

    Google Scholar 

  53. Hooker, C.: On the import of constraints in complex dynamical systems. Found. Sci. 18(4):757–780 (2013)

  54. Armstrong, D.M.: What is a Law of Nature? Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  55. Dretske, F.I.: Laws of nature. Philos. Sci. 44(2), 248–268 (1977)

    Article  Google Scholar 

  56. Tooley, M.: The nature of laws. Can. J. Philos. 7(4), 667–698 (1977)

    Article  Google Scholar 

  57. Bird, A.: Nature’s Metaphysics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  58. Ioannidis, S., Livanios, V., Psillos, S.: No laws and (thin) powers in, no (governing) laws out. Eur. J. Philos. Sci. 11(1), 1–26 (2021)

    Google Scholar 

  59. Vetter, B.: Dispositional essentialism and the laws of nature. In: Bird, A., Ellis, B., Sankey, H. (eds.) Properties, Powers, and Structures: Issues in the Metaphysics of Realism. Routledge, Milton Park (2012)

    Google Scholar 

  60. Hicks, M.T., Schaffer, J.: Derivative properties in fundamental laws. Br. J. Philos. Sci. 68(2) (2017)

  61. Tugby, M.: The problem of retention. Synthese 194(6), 2053–2075 (2017)

    Article  Google Scholar 

  62. Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73(1) (2006)

  63. Kadanoff, L.P.: Scaling and universality in statistical physics. Physica A 163(1), 1–14 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  64. Bird, A.: The dispositionalist conception of laws. Found. Sci. 10(4), 353–370 (2005)

    Article  Google Scholar 

  65. Ellis, B.: Scientific Essentialism. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  66. Molnar, G.: Powers: A Study in Metaphysics. Oxford University Press, Oxford (2003)

    Google Scholar 

  67. Mumford, S.: Laws in Nature. Routledge, Milton Park (2002)

    Google Scholar 

  68. Bigelow, J., Ellis, B., Lierse, C.: The world as one of a kind: natural necessity and laws of nature. Br. J. Philos. Sci. 43(3), 371–388 (1992)

    Article  Google Scholar 

  69. Maudlin, T.: The Metaphysics Within Physics. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  70. Carroll, J.W.: Laws of Nature. Cambridge Studies in Philosophy, Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  71. Lange, M., Lange, P.P.M.: Natural Laws in Scientific Practice. Oxford University Press, Oxford (2000)

    Google Scholar 

  72. Schaffer, J.: It is the business of laws to govern. Dialectica 70(4), 577–588 (2016)

    Article  MathSciNet  Google Scholar 

  73. French, S.: Structure as a weapon of the realist. Proc. Arist. Soc. 106, 169–187 (2006)

    Article  Google Scholar 

  74. Ladyman, J.: What is structural realism? Stud. Hist. Philos. Sci. A 29(3), 409–424 (1998)

    Article  Google Scholar 

  75. Morganti, M.: On the preferability of epistemic structural realism. Synthese 142, 81–107 (2004)

    Article  MathSciNet  Google Scholar 

  76. Worrall, J.: Structural realism: the best of both worlds?*. Dialectica 43(1–2), 99–124 (1989)

    Article  Google Scholar 

  77. French, S., Ladyman, J.: In defence of ontic structural realism. In: Bokulich, A., Bokulich, P. (eds.) Scientific Structuralism, pp. 25–42. Springer, Berlin (2011)

    Google Scholar 

  78. Berenstain, N., Ladyman, J.: Ontic structural realism and modality. In: Landry, Elaine, Rickles, Dean (eds.) Structural Realism: Structure, Object, and Causality. Springer, Berlin (2012)

    Google Scholar 

  79. Ladyman, J., Ross, D.: Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  80. Esfeld, M.: The modal nature of structures in ontic structural realism. Int. Stud. Philos. Sci. 23(2), 179–194 (2009)

    Article  Google Scholar 

  81. Kitcher, P.: The Advancement of Science: Science Without Legend, Objectivity Without Illusions. Oxford University Press, Oxford (1995)

    Book  Google Scholar 

  82. Psillos, S.: Scientific Realism: How Science Tracks Truth. Philosophical Issues in Science. Taylor & Francis, Milton Park (2005)

    Book  Google Scholar 

  83. Esfeld, M.: Ontic structural realism and the interpretation of quantum mechanics. Eur. J. Philos. Sci. 3 (2013)

  84. Ladyman, J.A.C.: Structure Not Selection, vol. 1, 1st edn. Oxford University Press, Oxford (2021)

    Google Scholar 

  85. Soto, C., Romero-Maltrana, D.: Local selective realism: shifting from classical to quantum electrodynamics. Found. Sci. 25(4), 955–970 (2020)

    Article  MathSciNet  Google Scholar 

  86. Ross, D., Ladyman, J., Spurrett, D.: Causation in a structural world. In: Ladyman, J. (ed.) Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, Oxford (2007)

    Google Scholar 

  87. Schaffer, J.: The internal relatedness of all things. Mind 119(474), 341–376 (2010)

    Article  Google Scholar 

  88. Cameron, R.P.: Turtles all the way down: regress, priority and fundamentality. Philos. Q. 58(230), 1–14 (2008)

    Google Scholar 

  89. Schaffer, J.: On what grounds what. In: Manley, D., Chalmers, D.J., Wasserman, R. (eds.) Metametaphysics: New Essays on the Foundations of Ontology, pp. 347–383. Oxford University Press, Oxford (2009)

    Google Scholar 

  90. Stanley, J.: “Assertion’’ and intentionality. Philos. Stud. 151(1), 87–113 (2010)

    Article  Google Scholar 

  91. Adlam, E.: Quantum mechanics and global determinism. Quanta 7, 40–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  92. Hildebrand, T.: Scientific practice and the epistemology of governing laws. J. Am. Philos. Assoc. 5(2), 174–188 (2019)

    Article  Google Scholar 

  93. Ismael, J.: An empiricist’s guide to objective modality. In: Slater, M., Yudell, Z. (eds.) Metaphysics and the Philosophy of Science: New Essays, pp. 109–125. Oxford University Press, New York (2017)

    Chapter  Google Scholar 

  94. Jaag, S., Loew, C.: Why defend humean supervenience? J. Philos. 117(7), 387–406 (2020)

    Article  Google Scholar 

  95. Tastevin, G., Laloë, F.: The outcomes of measurements in the de broglie-bohm theory. C. R. Phys. (2021)

  96. Wallace, D.: Everett and structure. Stud. Hist. Philos. 34(1), 87–105 (2003)

    MathSciNet  MATH  Google Scholar 

  97. Martens, N.C.M., Read, J.: Sophistry about symmetries? Synthese 199(1), 315–344 (2020)

    MathSciNet  Google Scholar 

  98. List, C., Pivato, M.: Dynamic and stochastic systems as a framework for metaphysics and the philosophy of science. Synthese 198(3), 2551–2612 (2019)

    Article  MathSciNet  Google Scholar 

  99. Cohen, J., Callender, C.: A better best system account of lawhood. Philos. Stud. 145(1), 1–34 (2009)

    Article  Google Scholar 

  100. Laplace, P.S.: Théorie analytique des probabilités. Courcier (1820)

  101. Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional calculi. Math. Log. Q. 9(5–6), 67–96 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  102. Callender, C.: There is no puzzle about the low entropy past. In: Hitchcock, C. (ed.) Contemporary Debates in Philosophy of Science, pp. 240–255. Blackwell, Oxford (2004)

    Google Scholar 

  103. Hicks, M.T.: Dynamic humeanism. Br. J. Philos. Sci. 69(4), 983–1007 (2017)

    Article  MathSciNet  Google Scholar 

  104. Wallace, D.: The logic of the past hypothesis, November 2011. In: B. Loewer, E. Winsberg and B. Weslake (ed.) Currently-Untitled Volume Discussing David Albert’s “Time and Chance”

  105. van Fraassen, B.C.: The Scientific Image. Clarendon Library of Logic and Philosophy, Clarendon Press, Oxford (1980)

    Book  Google Scholar 

  106. Hildebrand, T.: Platonic laws of nature. Can. J. Philos. 50(3), 365–381 (2020)

    Article  Google Scholar 

  107. Hochberg, H.: Natural necessity and laws of nature. Philos. Sci. 48(3), 386–399 (1981)

    Article  MathSciNet  Google Scholar 

  108. Van Fraassen, B.C.: Armstrong, cartwright, and Earman on laws and symmetry. Philos. Phenomenol. Res. 53(2):431–444 (1993)

  109. Lewis, D.: Philosophical Papers, vol. 2. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  110. Bell, J.: Against ‘measurement’. Phys. World (1990)

  111. Seevinck, M.P.: Can quantum theory and special relativity peacefully coexist? (2010)

  112. Cartwright, N.: How the Laws of Physics Lie. Oxford University Press, Oxford (1983)

    Book  Google Scholar 

  113. Loewer, B.: Humean supervenience. Philos. Top. 24(1), 101–127 (1996)

    Article  Google Scholar 

  114. Lanczos, C.: The Variational Principles of Mechanics. Mathematical Expositions, University of Toronto Press, Toronto (1949)

    Book  MATH  Google Scholar 

  115. Ostrogradsky, M.: Mémoire sur les equations différentielles relative au problème des isopérimètres. Mémoiries de l’Academie de St Pétèrsburg 6 (1850)

  116. Butterfield, J.: Some aspects of modality in analytical mechanics (2002). arXiv:physics/0210081

  117. Orr, J.: No god, no powers. Int. Philos. Q. 59(4), 411–426 (2019)

    Article  Google Scholar 

  118. Cartwright, N.: No god, no laws (2008)

  119. McTaggart, J.E.: The unreality of time. Mind 17(68), 457–474 (1908)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This publication was made possible through the support of the ID 61466 grant from the John Templeton Foundation, as part of the “The Quantum Information Structure of Spacetime (QISS)” Project (qiss.fr). The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Adlam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adlam, E. Laws of Nature as Constraints. Found Phys 52, 28 (2022). https://doi.org/10.1007/s10701-022-00546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00546-0

Keywords

Navigation