Skip to main content

Advertisement

Log in

Ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Leachate toxicity using bioindicators such as microcrustaceans and earthworms has not been fully elucidated. These bioindicators are traditionally determined through physicochemical and microbiological analyses. The ecotoxicological assessment of leachate using indicator organisms from different environments is a technique to ensure the treatment and safe disposal of this effluent with minimum impact on human health and the environment. The current study aimed to evaluate the ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate, identifying which organism was more sensitive to this effluent. The leachate used in ecotoxicological tests was collected at the Campina Grande Sanitary Landfill (ASCG), Paraíba, Brazil. The leachate sample contained a high content of organic matter in the form of chemical oxygen demand (19496.86 mg.L−1) and ammoniacal nitrogen (2198.00 mg.NL−1), in addition to metals with carcinogenic potential, such as Cr (0.64 mg.L−1) and Fe (1.16 mg.L−1). The exposure of Daphnia magna to the leachate showed that the effluent is harmful to aquatic organisms, obtaining an EC 50, 48 h = 1.22%, FT of 128 and a TU of 81.96%. Among the contaminant concentrations tested in Eisenia andrei, 57% (59.28 mL.kg−1) caused the highest lethality, causing the death of 21 earthworms within 72 hours of exposure. The avoidance test showed that exposure to leachate concentrations between 10.38 and 39.86 mL.kg−1 led to the leakage of earthworms, and habitat loss was observed at a concentration of 55.80 mL.kg−1, in which leak response (LR) ≥80% was obtained. This study demonstrates that the mentioned organisms are suitable for ecotoxicological tests in landfill leachate. Moreover, the microcrustacean Daphnia magna showed the most significant sensitivity, presenting a rapid ecotoxicological response to the leachate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABNT, 2004. NBR 10.004-2004: Resíduos Sólidos: Classificação. Rio de Janeiro, RJ. 77

  • ABNT, 2014. NBR 15537: ecotoxicologia terrestre: ecotoxicidade aguda: método de ensaio para minhocas. Rio de Janeiro, RJ. 13

  • ABNT, 2016. NBR 12713: Ecotoxicologia aquática - Toxicidade aguda - Método de ensaio com Daphnia spp (Crustacea, Cladocera). Rio de Janeiro, RJ

  • ABNT, 2021. NBR 15469: Ecotoxicology - Collection, preservation and preparation of samples. Rio de Janeiro, RJ

  • Alimba CG, Bakare AA (2016) In vivo micronucleus test in the assessment of cytogenotoxicity of landfill leachates in three animal models from various ecological habitats. Ecotoxicology. 25:310–319

    Article  CAS  Google Scholar 

  • Araujo, PS, Análise do desempenho de um solo compactado utilizado na camada de cobertura de um aterro sanitário. Civil and Environmental Engineering, Vol. Master. Universidade Federal de Campina Grande, Campina Grande, 2017

  • Arunbabu V et al. (2017) Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Manag 68:329–336

    Article  CAS  Google Scholar 

  • Baderna D et al. (2019) Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. Environ Int 122:21–30

    Article  CAS  Google Scholar 

  • Baird, RB, Standard methods for the examination of water and wastewater, 23rd. Water Environment Federation, American Public Health Association, American …, 2017

  • Bernard C et al. (1996) Estimation of the hazard of landfills through toxicity testing of leachates-I. Determination of leachate toxicity with a battery of acute tests. Chemosphere. 11:2303–2320

    Article  Google Scholar 

  • Bernard F et al. (2015) Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. Ecotoxicol Environ Saf 114:273–303

    Article  CAS  Google Scholar 

  • Bove D et al. (2015) A critical review of biological processes and technologies for landfill leachate treatment. Chem Eng Technol 38:2115–2126

    Article  CAS  Google Scholar 

  • Brasil, 2011. Resolução n° 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a Resolução no 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente-CONAMA. Diário Oficial da União

  • Buckova M et al. (2017) Fast ecotoxicity detection using biosensors. Water Air Soil Pollut 228:166

    Article  Google Scholar 

  • Carabalí-Rivera Y et al. (2017) Determination of leachate toxicity through acute toxicity using Daphnia pulex and anaerobic toxicity assays. Ingeniería e Investigación 37:16–24

    Article  Google Scholar 

  • Clarke BO et al. (2015) Investigating landfill leachate as a source of trace organic pollutants. Chemosphere. 127:269–275

    Article  CAS  Google Scholar 

  • Coelho, RDS, Avaliação da toxicidade de fluidos de usinagem através da ecotoxicologia aquática. Universidade de São Paulo, 2006

  • Colombo A et al. (2019) Toxicity evaluation of the landfill leachate after treatment with photo-Fenton, biological and photo-Fenton followed by biological processes. J Environ Sci Health Part A 54:269–276

    Article  CAS  Google Scholar 

  • Costa AM et al. (2019) Landfill leachate treatment in Brazil–An overview. J Environ Manag 232:110–116

    Article  CAS  Google Scholar 

  • Costa, AM, et al., Avaliação da Ecotoxicidade do Lixiviado do Aterro Sanitário de Seropédica-RJ Utilizando os Organismos A. fischeri, D. similis E D. Congresso Brasileiro de Ecotoxicologia, Aracaju, SE, Brazil, 2018, pp. 718

  • Da Silva, LF, et al., Importância da Utilização de Bioensaios com Diferentes Níveis Tróficos para a Avaliação da Ecotoxicidade de Lixiviados de Aterros Sanitários. Congresso Brasileiro de Ecotoxicologia, Aracaju, SE, Brazil, 2018, pp. 758

  • Lisbôa RM et al. (2021) Ecotoxicological responses of Eisenia andrei exposed in field-contaminated soils by sanitary sewage. Ecotoxicology and Environmental Safety 214:112049

  • Fernandes A et al. (2019) Ecotoxicological evaluation of electrochemical oxidation for the treatment of sanitary landfill leachates. Environ Sci Pollut Res 26:24–33

    Article  CAS  Google Scholar 

  • Franco, HA, et al., 2016. Aplicação de lixiviado de aterro sanitário em substrato para produção de mudas florestais: uma abordagem ecotoxicológica. In IV CBRA. Congresso Brasileiro de Reflorestamento Ambiental. Proceedings. Rio de Janeiro: Reflorestamento Ambiental, pp. 113-117

  • Garbo F et al. (2019) Assessment of the ecotoxicity of phytotreatment substrate soil as landfill cover material for in-situ leachate management. J Environ Manag 231:289–296

    Article  CAS  Google Scholar 

  • Garcia, M, 2004. Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions. Cuvillier Verlag

  • Ghosh P et al. (2017) Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicol Environ Saf 141:259–270

    Article  CAS  Google Scholar 

  • Gomes BCV et al. (2016) Potencial toxicológico de metais presentes em solos de cemitérios de Santa Maria-RS. Revista Ambiente & Água 11:145–155

    Google Scholar 

  • Guedes MJF et al. (2018) Avaliação de emissões de biogás e geração de energia em aterro sanitário no semiárido brasileiro. Revista Ibero-Americana de Ciências Ambientais 9:188–203

    Article  Google Scholar 

  • INSA, O semiárido Brasileiro. Vol. 2021, 2021

  • ISO11268-1, ISO 11268-1: soil quality–effects of pollutants on earthworms (Eisenia fetida). Part 2. Determination of Effects on Reproduction. ISO Geneva, 1997

  • ISO11268-3, ISO 11268-3: Soil quality — Effects of pollutants on earthworms — Part 3: Guidance on the determination of effects in field situations. ISO Geneva, 2014

  • ISO 17512-1, ISO 17512-1: Soil Quality - Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei). ISO Geneva, 2011

  • Jóźwiak MA, Jóźwiak M, Kozłowski R, Żelezik M (2019) Zooremediation of leachates from municipal waste using Eisenia fetida (SAV.). Environmental Pollution 254:112871

    Article  Google Scholar 

  • Kjeldsen P et al. (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  • Klauck CR et al. (2017) Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environ Technol Innovat 8:246–255

    Article  Google Scholar 

  • Luo H et al. (2019) Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci Total Environ 668:90–103

    Article  CAS  Google Scholar 

  • Luo H et al. (2020) Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468

    Article  CAS  Google Scholar 

  • Maia IS et al. (2015) Avaliação do tratamento biológico de lixiviado de aterro sanitário em escala real na Região Sul do Brasil. Engenharia Sanitaria e Ambiental 20:665–675

    Article  CAS  Google Scholar 

  • Maiti SK et al. (2016) Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite–a case study at Dhapa, Kolkata, India. Procedia. Environ Sci 35:391–399

    CAS  Google Scholar 

  • Mkhinini M et al. (2019) Effect of treated wastewater irrigation in East Central region of Tunisia (Monastir governorate) on the biochemical and transcriptomic response of earthworms Eisenia andrei. Sci Total Environ 647:1245–1255

    Article  CAS  Google Scholar 

  • Mukherjee S et al. (2015) Contemporary environmental issues of landfill leachate: assessment and remedies. Crit Rev Environ Sci Technol 45:472–590

    Article  Google Scholar 

  • OECD, 1984. 207: Earthworm, acute toxicity tests, 1984. OECD guidelines for the testing of chemicals, section. 2

  • Oliveira, MNPBV, 2017. Reutilização de áreas de lixões encerrados: aspectos jurídicos e ensaios ecotoxicológicos em chorume do lixão de Santa Cruz – RJ. Thesis – Civil and Environmental Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro - RJ. 106p

  • Paixão Filho, J. L. d., Lixiviado de aterro sanitário: alternativas de tratamento para o cenário brasileiro. PhD dissertation. Unicamp, 2017, pp. 246

  • Qiu A et al. (2016) Evaluation of the treatment process of landfill leachate using the toxicity assessment method. Int J Environ Res Public Health 13:1262

    Article  Google Scholar 

  • Renou S et al. (2008) Landfill leachate treatment: Review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Restrepo JJB et al. (2017) Correlation between acute toxicity for Daphnia magna, Aliivibrio fischeri and physicochemical variables of the leachate produced in landfill simulator reactors. Environ Technol 38:2898–2906

    Article  Google Scholar 

  • Robinson T (2017) Removal of toxic metals during biological treatment of landfill leachates. Waste Manag 63:299–309

    Article  CAS  Google Scholar 

  • Sackey LN et al. (2020) Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Sci Total Environ 698:134295

    Article  CAS  Google Scholar 

  • Saggioro EM et al. (2019) Lethal and sublethal effects of acetamiprid on Eisenia andrei: behavior, reproduction, cytotoxicity and oxidative stress. Ecotoxicol Environ Saf 183:109572

    Article  CAS  Google Scholar 

  • Sales Junior, SF, Avaliação ecotoxicológica de lixiviado de aterro de resíduos sólidos utilizando minhocas da espécie Eisenia andrei: estresse oxidativo, citotoxicidade e genotoxicidade. 2019

  • Sales Junior SF et al. (2021) Lethal and long-term effects of landfill leachate on Eisenia andrei earthworms: Behavior, reproduction and risk assessment. J Environ Manag 285:112029

    Article  CAS  Google Scholar 

  • Silva, EM, 2022 Ecotoxicidade de resíduos sólidos urbanos e de lixiviado gerado em aterro sanitário. PhD dissertation. Universidade Federal de Campina Grande, Campina Grande – PB, pp. 185

  • Singh S et al. (2016) Earthworm as ecological engineers to change the physico-chemical properties of soil: soil vs vermicast. Ecol Eng 90:1–5

    Article  CAS  Google Scholar 

  • Sisinno, CLS, Niemeyer, JC, Segat, JC, Oliveira Filho, LCI, Niva, CC and Brown, GG, 2019. Importância e aplicações dos ensaios ecotoxicológicos com oligoquetas. Embrapa Cerrados-Capítulo em livro científico (ALICE)

  • Souto G, Povinelli J (2007) Características do lixiviado de aterros sanitários no Brasil. Congresso Brasileiro de Engenharia Sanitária e Ambiental 24:2007

    Google Scholar 

  • Uwizeyimana H et al. (2017) The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environ Toxicol Pharmacol 55:20–29

    Article  CAS  Google Scholar 

  • Von Sperling, M, 2017. Lagoas de estabilização: princípios do tratamento biológico de águas residuárias. Editora UFMG

  • Wdowczyk A, Szymańska-Pulikowska A (2021) Analysis of the possibility of conducting a comprehensive assessment of landfill leachate contamination using physicochemical indicators and toxicity test. Ecotoxicol Environ Saf 221:112434

    Article  CAS  Google Scholar 

  • Yang G et al. (2018) Combined effects of four pesticides and heavy metal chromium (VI) on the earthworm using avoidance behavior as an endpoint. Ecotoxicol Environ Saf 157:191–200

    Article  CAS  Google Scholar 

  • Yan H et al. (2015) Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater. Sci Total Environ 524:23–31

    Article  Google Scholar 

  • Yang H et al. (2019) Rural solid waste—characteristics and leachate pollution assessment for different precipitation levels, China. Environ Sci Pollut Res 26:11234–11244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support provided by the Higher Education Improvement Coordination (CAPES; finance code 001).

Author contributions

All authors contributed to the study conception and design. EMS: Conceptualization, Investigation, Software and Data curation, Writing. NAG: Writing, Methodology and Data curation. SCN: Writing, Methodology and Investigation. BMAN: Writing, Methodology and Reviewing. VEDM: Conceptualization, Supervision, and Validation. MCM: Supervision, Reviewing and Visualization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno Moura de Araújo Nóbrega.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.M., Gomes, N.A., do Nascimento, S.C. et al. Ecotoxicological responses of Daphnia magna and Eisenia andrei in landfill leachate. Ecotoxicology 31, 1299–1309 (2022). https://doi.org/10.1007/s10646-022-02587-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02587-7

Keywords

Navigation