Skip to main content

Advertisement

Log in

Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus)

  • EcoTox Note
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of “legacy” and “next-generation” PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Alderete TL, Jin R, Walker DI et al. (2019) Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: a proof-of-concept analysis. Environ Int 126:445–453. https://doi.org/10.1016/j.envint.2019.02.047

    Article  CAS  Google Scholar 

  • Ankley GT, Cureton P, Hoke RA et al. (2021) Assessing the ecological risks of per- and polyfluoroalkyl substances: current state-of-the science and a proposed path forward. Environ Toxicol Chem 40(3):564–605. https://doi.org/10.1002/etc.4869

    Article  CAS  Google Scholar 

  • Annunziato KM, Jantzen CE, Gronske MC, Cooper KR (2019) Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to PFHxA, PFHxS and 6:2 FTOH. Aquat Toxicol 208:126–137. https://doi.org/10.1016/j.aquatox.2019.01.009

    Article  CAS  Google Scholar 

  • Bambino K, Chu J (2017) Zebrafish in toxicology and environmental health. Curr Top Dev Biol 124:331–367. https://doi.org/10.1016/bs.ctdb.2016.10.007

    Article  CAS  Google Scholar 

  • Bassler J, Ducatman A, Elliott M et al. (2019) Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ Pollut 247:1055–1063. https://doi.org/10.1016/j.envpol.2019.01.064

    Article  CAS  Google Scholar 

  • Beardsley Jr GL (1967) Age, growth, and reproduction of the dolphin, Coryphaena hippurus, in the Straits of Florida. Copeia 1967:441–451

  • Berry JP, Gantar M, Gibbs PD, Schmale MC (2007) The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comp Biochem Physiol C Toxicol 145(1):61–72

    Article  Google Scholar 

  • Bowman JS (2015) Fluorotechnology is critical to modern life: the FluoroCouncil counterpoint to the Madrid Statement. Environ Health Perspect 123(5):A112–A113

    Article  Google Scholar 

  • Bradford YM, Toro S, Ramachandran S et al. (2017) Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J 58(1):4–16

    Article  CAS  Google Scholar 

  • Buhrke T, Kibellus A, Lampen A (2013) In vitro toxicological characterization of perfluorinated carboxylic acids with different carbon chain lengths. Toxicol Lett 218(2):97–104. https://doi.org/10.1016/j.toxlet.2013.01.025

    Article  CAS  Google Scholar 

  • Burkhard LP (2021) Evaluation of published bioconcentration factor (BCF) and bioaccumulation factor (BAF) data for per‐and polyfluoroalkyl substances across aquatic species. Environ Toxicol Chem 40:1530–1543

  • Casas G, Martinez-Varela A, Roscales JL, Vila-Costa M, Dachs J, Jimenez B (2020) Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean. Environ Pollut 267:115512. https://doi.org/10.1016/j.envpol.2020.115512

    Article  CAS  Google Scholar 

  • Chen Z, Yang T, Walker DI et al. (2020) Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ Int 145:106091. https://doi.org/10.1016/j.envint.2020.106091

    Article  CAS  Google Scholar 

  • Cheng X, Klaassen CD (2008) Critical role of PPAR-α in perfluorooctanoic acid–and perfluorodecanoic acid–induced downregulation of Oatp uptake transporters in mouse livers. Toxicol Sci 106(1):37–45

    Article  CAS  Google Scholar 

  • Dale K, Yadetie F, Muller MB, et al (2020) Proteomics and lipidomics analyses reveal modulation of lipid metabolism by perfluoroalkyl substances in liver of Atlantic cod (Gadus morhua). Aquat Toxicol 227:105590. https://doi.org/10.1016/j.aquatox.2020.105590

  • Edmunds RC, Gill JA, Baldwin DH et al. (2015) Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep 5(1):17326. https://doi.org/10.1038/srep17326

    Article  CAS  Google Scholar 

  • Esbaugh AJ, Mager EM, Stieglitz JD et al. (2016) The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. Sci Total Environ 543(Pt A):644–651. https://doi.org/10.1016/j.scitotenv.2015.11.068

    Article  CAS  Google Scholar 

  • Fang S, Zhao S, Zhang Y, Zhong W, Zhu L (2014) Distribution of perfluoroalkyl substances (PFASs) with isomer analysis among the tissues of aquatic organisms in Taihu Lake, China. Environ Pollut 193:224–232

    Article  CAS  Google Scholar 

  • Gaballah S, Swank A, Sobus JR et al. (2020) Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ Health Perspect 128(4):47005. https://doi.org/10.1289/EHP5843

    Article  CAS  Google Scholar 

  • Gebreab KY, Eeza MNH, Bai T et al. (2020) Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. Environ Pollut 265(Pt A):114928. https://doi.org/10.1016/j.envpol.2020.114928

    Article  CAS  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–42. https://doi.org/10.1021/es001834k

    Article  CAS  Google Scholar 

  • Giesy JP, Naile JE, Khim JS, Jones PD, Newsted JL (2010) Aquatic toxicology of perfluorinated chemicals. Rev Environ Contam Toxicol 202:1–52. https://doi.org/10.1007/978-1-4419-1157-5_1

    Article  CAS  Google Scholar 

  • Godfrey A, Hooser B, Abdelmoneim A, Horzmann KA, Freemanc JL, Sepulveda MS (2017) Thyroid disrupting effects of halogenated and next generation chemicals on the swim bladder development of zebrafish. Aquat Toxicol 193:228–235. https://doi.org/10.1016/j.aquatox.2017.10.024

    Article  CAS  Google Scholar 

  • Gomis MI, Wang Z, Scheringer M, Cousins IT (2015) A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci Total Environ 505:981–91. https://doi.org/10.1016/j.scitotenv.2014.10.062

    Article  CAS  Google Scholar 

  • Hagenaars A, Vergauwen L, De Coen W, Knapen D (2011) Structure–activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere 82(5):764–772

    Article  CAS  Google Scholar 

  • Heuer RM, Galli GLJ, Shiels HA et al. (2019) Impacts of deepwater horizon crude oil on mahi-mahi (Coryphaena hippurus) heart cell function. Environ Sci Technol 53(16):9895–9904. https://doi.org/10.1021/acs.est.9b03798

    Article  CAS  Google Scholar 

  • Huang Q, Fang C, Wu X, Fan J, Dong S (2011) Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma). Aquat Toxicol 105(1–2):71–7. https://doi.org/10.1016/j.aquatox.2011.05.012

  • Jantzen CE, Annunziato KM, Cooper KR (2016) Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA. Aquat Toxicol 180:123–130. https://doi.org/10.1016/j.aquatox.2016.09.011

    Article  CAS  Google Scholar 

  • Jeon J, Kannan K, Lim HK, Moon HB, Kim SD (2010) Bioconcentration of perfluorinated compounds in blackrock fish, Sebastes schlegeli, at different salinity levels. Environ Toxicol Chem 29(11):2529–2535

    Article  CAS  Google Scholar 

  • Ju X, Jin Y, Sasaki K, Saito N (2008) Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian Coastal waters in China. Environ Sci Technol 42(10):3538–42. https://doi.org/10.1021/es703006d

    Article  CAS  Google Scholar 

  • KemI O (2015) Use of highly 717 fluorinated substances and alternatives. Swedish Chemicals Agency

  • Kirby AR, Cox GK, Nelson D, et al (2019) Acute crude oil exposure alters mitochondrial function and ADP affinity in cardiac muscle fibers of young adult Mahi-mahi (Coryphaena hippurus). Comp Biochem Physiol C Toxicol Pharmacol 218:88–95. https://doi.org/10.1016/j.cbpc.2019.01.004

  • Kloeblen S, Stieglitz JD, Suarez JA, Grosell M, Benetti DD (2018) Characterizing egg quality and larval performance from captive mahi‐mahi Coryphaena hippurus (Linnaeus, 1758) spawns over time. Aquac Res 49(1):282–293

    Article  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–94. https://doi.org/10.1093/toxsci/kfm128

    Article  CAS  Google Scholar 

  • Li X, Fatowe M, Cui D, Quinete N (2022) Assessment of per- and polyfluoroalkyl substances in Biscayne Bay surface waters and tap waters from South Florida. Sci Tot Environ 806:150393

    Article  CAS  Google Scholar 

  • Maggio T, Allegra A, Andaloro F et al. (2019) Historical separation and present-day structure of common dolphinfish (Coryphaena hippurus) populations in the Atlantic Ocean and Mediterranean Sea. ICES J Mar Sci 76(4):1028–1038

    Article  Google Scholar 

  • McCarthy C, Kappleman W, DiGuiseppi W (2017) Ecological considerations of per-and polyfluoroalkyl substances (PFAS). Curr Pollut Rep 3(4):289–301

    Article  CAS  Google Scholar 

  • Menger F, Pohl J, Ahrens L, Carlsson G, Orn S (2020) Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245:125573. https://doi.org/10.1016/j.chemosphere.2019.125573

    Article  CAS  Google Scholar 

  • Nelson D, Heuer RM, Cox GK et al. (2016) Effects of crude oil on in situ cardiac function in young adult mahi–mahi (Coryphaena hippurus). Aquat Toxicol 180:274–281

    Article  CAS  Google Scholar 

  • Oxenford HA, Hunte W (1999) Feeding habits of the dolphinfish (Coryphaena hippurus) in the eastern Caribbean. Scientia Marina 63(3-4):303–315

    Article  Google Scholar 

  • Palko BJ, Beardsley GL, Richards WJ (1982) Synopsis of the biological data on dolphin-fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus

  • Palmer S, Van Hoven R, Krueger H (2002a) Perfluorooctanesulfonate, potassium salt (PFOS): a 96-hr static acute toxicity test with the rainbow trout (Oncorhynchus mykiss) Report No 454A-145 EPA Docket AR226-1030a044. Wildlife International Ltd, Easton, MD

    Google Scholar 

  • Palmer S, Van Hoven R, Krueger H (2002b) Perfluorooctanesulfonate, potassium salt (PFOS): a 96-hr static renewal acute toxicity test with the sheepshead minnow (Cyprinodon variegatus). Report No. 454A-146A, Wildlife International Ltd

  • Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M (2016) Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). Aquat Toxicol 181:113–123. https://doi.org/10.1016/j.aquatox.2016.10.022

    Article  CAS  Google Scholar 

  • Pecquet AM, Maier A, Kasper S, Sumanas S, Yadav J (2020) Exposure to perfluorooctanoic acid (PFOA) decreases neutrophil migration response to injury in zebrafish embryos. BMC Res Notes 13(1):408. https://doi.org/10.1186/s13104-020-05255-3

    Article  CAS  Google Scholar 

  • Pérez F, Nadal M, Navarro-Ortega A et al. (2013) Accumulation of perfluoroalkyl substances in human tissues. Environ Int 59:354–362

    Article  Google Scholar 

  • Perrichon P, Mager EM, Pasparakis C et al. (2018) Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi-mahi, Coryphaena hippurus. PLoS ONE 13(10):e0203949. https://doi.org/10.1371/journal.pone.0203949

    Article  CAS  Google Scholar 

  • Perrichon P, Stieglitz JD, Xu EG et al. (2019) Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. Dev Dyn 248(5):337–350. https://doi.org/10.1002/dvdy.27

    Article  Google Scholar 

  • Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44. https://doi.org/10.1021/es0512475

    Article  CAS  Google Scholar 

  • Rericha Y, Cao D, Truong L, Simonich M, Field JA, Tanguay RL (2021) Behavior effects of structurally diverse per- and polyfluoroalkyl substances in zebrafish. Chem Res Toxicol 34(6):1409–1416

    Article  CAS  Google Scholar 

  • Robertson DR, Gaines SD (1986) Interference compoetition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67(5):1372–1383

    Article  Google Scholar 

  • Sant KE, Annunziato K, Conlin S et al. (2021) Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. Environ Pollut 275:116644. https://doi.org/10.1016/j.envpol.2021.116644

    Article  CAS  Google Scholar 

  • Shafique U, Schulze S, Slawik C, Kunz S, Paschke A, Schüürmann G (2017) Gas chromatographic determination of perfluorocarboxylic acids in aqueous samples—a tutorial review. Anal Chim Acta 949:8–22

    Article  CAS  Google Scholar 

  • Shi X, Du Y, Lam PK, Wu RS, Zhou B (2008) Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol 230(1):23–32. https://doi.org/10.1016/j.taap.2008.01.043

    Article  CAS  Google Scholar 

  • Shrestha S, Bloom MS, Yucel R et al. (2017) Perfluoroalkyl substances, thyroid hormones, and neuropsychological status in older adults. Int J Hyg Environ Health 220(4):679–685. https://doi.org/10.1016/j.ijheh.2016.12.013

    Article  CAS  Google Scholar 

  • Stieglitz JD, Hoenig RH, Kloeblen S, Tudela CE, Grosell M, Benetti DD (2017) Capture, transport, prophylaxis, acclimation, and continuous spawning of Mahi-mahi (Coryphaena hippurus) in captivity. Aquaculture 479:1–6

    Article  Google Scholar 

  • Stieglitz JD, Mager EM, Hoenig RH, Benetti DD, Grosell M (2016) Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environ Toxicol Chem 35(10):2613–2622. https://doi.org/10.1002/etc.3436

    Article  CAS  Google Scholar 

  • Ulhaq M, Orn S, Carlsson G, Morrison DA, Norrgren L (2013) Locomotor behavior in zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquat Toxicol 144-145:332–40. https://doi.org/10.1016/j.aquatox.2013.10.021

    Article  CAS  Google Scholar 

  • Vogs C, Johanson G, Näslund M et al. (2019) Toxicokinetics of perfluorinated alkyl acids influences their toxic potency in the zebrafish embryo (Danio rerio). Environ Sci Technol 53(7):3898–3907

    Article  CAS  Google Scholar 

  • Wang Z, Cousins IT, Scheringer M, Hungerbuehler K (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int 75:172–179

    Article  CAS  Google Scholar 

  • Wang Z, Cousins IT, Scheringer M, Hungerbühler K (2013) Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ Int 60:242–248

    Article  CAS  Google Scholar 

  • Wang Z, DeWitt JC, Higgins CP, Cousins IT (2017) A never-ending story of per-and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 1:2508–2518

  • Wasel O, Thompson KM, Gao Y et al. (2021) Comparison of zebrafish in vitro and in vivo developmental toxicity assessments of perfluoroalkyl acids (PFAAs). J Toxicol Environ Health A 84(3):125–136. https://doi.org/10.1080/15287394.2020.1842272

    Article  CAS  Google Scholar 

  • Weiss-Errico MJ, Berry JP, O’Shea KE (2017) Beta-cyclodextrin attenuates perfluorooctanoic acid toxicity in the zebrafish embryo model. Toxics 5(4):31. https://doi.org/10.3390/toxics5040031

    Article  CAS  Google Scholar 

  • Xiao X, Ulrich BA, Chen B, Higgins CP (2017) Sorption of poly-and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environ Sci Technol 51(11):6342–6351

    Article  CAS  Google Scholar 

  • Xu EG, Mager EM, Grosell M, Hazard ES, Hardiman G, Schlenk D (2017) Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil. Sci Rep 7(1):44546. https://doi.org/10.1038/srep44546

    Article  Google Scholar 

  • Yamashita N, Kannan K, Taniyasu S et al. (2004) Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol 38(21):5522–5528

    Article  CAS  Google Scholar 

  • Ye L, Wu LL, Jiang YX, Zhang CJ, Chen L (2009) [Toxicological study of PFOS/PFOA to zebrafish (Danio rerio) embryos]. Huan Jing Ke Xue 30(6):1727–32

    CAS  Google Scholar 

  • Yu N, Wei S, Li M et al. (2016) Effects of perfluorooctanoic acid on metabolic profiles in brain and liver of mouse revealed by a high-throughput targeted metabolomics approach. Sci Rep 6(1):23963. https://doi.org/10.1038/srep23963

    Article  CAS  Google Scholar 

  • Zheng X-M, Liu H-L, Shi W, Wei S, Giesy JP, Yu H-X (2012) Effects of perfluorinated compounds on development of zebrafish embryos. Environ Sci Pollut Res 19(7):2498–2505

    Article  CAS  Google Scholar 

  • Zuberi Z, Eeza MNH, Matysik J, Berry JP, Alia A (2019) NMR-based metabolic profiles of intact zebrafish embryos exposed to aflatoxin B1 recapitulates hepatotoxicity and supports possible neurotoxicity. Toxins 11(5):258. https://doi.org/10.3390/toxins11050258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from Florida International University, University Graduate School’s Presidential Fellowship program, which financially supported, in part, KYG. MG is a Maytag Professor of Ichthyology.

Funding

Financial support for KYG was provided by Florida International University Graduate School Presidential Fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

Mahi-mahi embryos used in the study were provided by JDS, DB and MG from the UM Experimental Fish Hatchery. KYG and JPB contributed to the study conception and design. Data collection and analysis were performed by KYG. The first draft of the manuscript was written by KYG and JPB, and all authors commented on subsequent revisions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. P. Berry.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Hatchery spawning of mahi-mahi was conducted protocols approved by the University of Miami Institutional Animal Care and Use Committee (IACUC, 18-052-LF). All toxicity assays involving mahi-mahi were performed under protocols approved by the Florida International University IACUC (IACUC-19-085), and performed by trained investigators.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebreab, K.Y., Benetti, D., Grosell, M. et al. Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus). Ecotoxicology 31, 1057–1067 (2022). https://doi.org/10.1007/s10646-022-02576-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02576-w

Keywords

Navigation