Skip to main content

Advertisement

Log in

Recent changes in the rain regime over the Mediterranean climate region of Israel

Climatic Change Aims and scope Submit manuscript

Abstract

Previous observational analyses have shown a declining rainfall trend over Israel, mostly statistically insignificant. The current study, for the period 1975–2020, undermines these findings, and the alarming future projections, and elaborates other ingredients of the rain regime. No trend is found for the annual rainfall, reflecting a balance between a negative trend in the number of rainy days and a positive trend in the daily rainfall intensity, both on the order of 2.0%/decade. In the mid-winter, the rainfall and the daily intensity increased, while both declined in the autumn and spring, implying a contraction of the rainy season. The time span between accumulation of 10% and 90% of the annual rainfall, being 112 days on the average, shortened by 7 days during the study period. This is also expressed by an increase of the Seasonality Index, indicating that the regional climate is shifting from “markedly seasonal with a long dry season” to “most rain in ≤3 months.” The intra-seasonal course of the rainfall trend corresponds to that of the occurrence and intensity of the Cyprus Lows and the Mediterranean Oscillation. The contraction of the rainy season and the increase in the daily intensity have far-reaching environmental impacts in this vulnerable region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alpert P, Neeman BU, Shay-El Y (1990) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A:65–77

    Article  Google Scholar 

  • Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) Evidence for increase of extreme daily rainfall in the Mediterranean in spite of decrease in Total values. Geophys Res Lett 29(1536):31–34. https://doi.org/10.1029/2001GL013554

    Article  Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004a) Semi-objective classification for daily synoptic systems: application to the eastern Mediterranean climate change. Int J Climatol 24(8):1001–1011

    Article  Google Scholar 

  • Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) A new seasons definition based on classified daily synoptic systems: an example for the eastern Mediterranean. Int J Climatol 24(8):1013–1021

    Article  Google Scholar 

  • Alpert P, Price C, Krichak SO, Ziv B, Saaroni H, Osetinsky I, Barkan J, Kishcha P (2005) Tropical tele-connections to the Mediterranean climate and weather. Adv Geosci 2:157–160

    Article  Google Scholar 

  • Alpert P, Krichak SO, Shafir H, Haim D, Osetinsky I (2008) Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Glob Planet Chang 63:163–170

    Article  Google Scholar 

  • Badr HS, Zaitchik BF, Dezfuli AK (2015) A tool for hierarchical climate regionalization. Earth Sci Inf 8:949–958

    Article  Google Scholar 

  • Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in space and time. Oxford University Press, Oxford

    Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci 108(4):1474–1478

    Article  Google Scholar 

  • Chenoweth J, Hadjinicolaou P, Bruggeman A, Lelieveld J, Levin Z, Lange MA, Xoplaki E, Hadjikakou M (2011) Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: modeled 21st century changes and implications. Water Resour Res 47:W06506. https://doi.org/10.1029/2010WR010269

    Article  Google Scholar 

  • de Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. J Geophys Res-Atmos 118(13):7087–7108

    Article  Google Scholar 

  • Giorgi G, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Goldreich Y (2003) The climate of Israel: observation, research and application. Kluwer Academic Publishes, New York

    Book  Google Scholar 

  • Goldreich Y, Moses H, Rosenfeld D (2004) Radar analysis of cloud systems and their rainfall yield in Israel. Isr J Earth Sci 53:63–76

    Article  Google Scholar 

  • Hochman A, Harpaz T, Saaroni H, Alpert P (2018a) Synoptic classification in 21st century CMIP5 predictions over the eastern Mediterranean with focus on cyclones. Int J Climatol 38(3):1476–1483. https://doi.org/10.1002/joc.5260

    Article  Google Scholar 

  • Hochman A, Harpaz T, Saaroni H, Alpert P (2018b) The seasons’ length in 21st century CMIP5 projections over the eastern Mediterranean. Int J Climatol 38(6):2627–2637. https://doi.org/10.1002/joc.5448

    Article  Google Scholar 

  • Hochman A, Mercogliano P, Alpert P, Saaroni H, Bucchignani E (2018c) High resolution projection of climate change and extremity over Israel using COSMO-CLM. Int J Climatol 38(14):5095–5106. https://doi.org/10.1002/joc.5714

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zhou G (2018) Impacts of 1.5°C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner HO et al (eds) Global Warming of 1.5°C, An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty In Press

    Google Scholar 

  • Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc Nat Acad Sci USA 112(11):3241–3246

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the Eastern Mediterranean. Meteorog Atmos Phys 89:69–85

    Article  Google Scholar 

  • Krichak SO, Feldstein SB, Alpert P, Gualdi S, Scoccimarro E, Yano JI (2015) Discussing the role of tropical and subtropical moisture sources in extreme precipitation events in the Mediterranean region from a climate change perspective. Nat Hazards Earth Syst Sci Discuss 3:3983–4005

    Google Scholar 

  • Lelieveld J, Hadjinicolaou P, Kostopoulou E, Chenoweth J, El Maayar M, Giannakopoulos C, Hannides C, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Chang 114:667–687

    Article  Google Scholar 

  • Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. https://doi.org/10.1029/2006GL028443

    Article  Google Scholar 

  • Malkinson D (2012) Wildfire heterogeneity: empirical vs. simulated observations – the Carmel 2010 wildfire as a case study. Isr J Ecol Evol 58(2–3):165–176

    Google Scholar 

  • Morin E (2011) To know what we cannot know: global mapping of minimal detectable absolute trends in annual precipitation. Water Resour Res 47:W07505. https://doi.org/10.1029/2010WR009798

    Article  Google Scholar 

  • Palutikof JP (2003) Analysis of Mediterranean climate data: measured and modelled. In: Bolle HJ (ed) Mediterranean climate: variability and trends. Springer-Verlag, Berlin

    Google Scholar 

  • Paz S, Kutiel H (2003) Rainfall regime uncertainty (RRU) in an eastern Mediterranean region—a methodological approach. Isr J Earth Sci 52:47–63

    Article  Google Scholar 

  • Pohlert T (2020) Trend: non-parametric trend tests and change-point detection. R package version 1.1.2. https://CRAN.R-project.org/package=trend

  • Porat A (2016) Monthly weather summary – November 2016. IMS publication, December 2016 (in Hebrew) https://ims.gov.il/sites/default/files/nov16.pdf

  • Porat A (2019) Monthly weather summary – November 2016. IMS publication, December 2019 (in Hebrew) https://ims.gov.il/sites/default/files/nov19_1.pdf

  • Previdi M, Liepert B (2007) Annual modes and Hadley cell expansion under global warming. Geophys Res Lett 34(22):L22701. https://doi.org/10.1029/2007GL031243

    Article  Google Scholar 

  • Raible CC, Ziv B, Saaroni H, Wild M (2010) Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Clim Dyn 35:473–488. https://doi.org/10.1007/s00382-009-0678-5

    Article  Google Scholar 

  • Raymond F, Ullmann A, Camberlin P, Oueslati B, Drobinski P (2018) Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean Basin. Clim Dyn 50(11–12):4437–4453. https://doi.org/10.1007/s00382-017-3884-6

    Article  Google Scholar 

  • Reiser H, Kutiel H (2009) Rainfall uncertainty in the Mediterranean: definitions of the daily rainfall threshold (DRT) and the rainy season length (RSL). Theor Appl Climatol 97:151–162. https://doi.org/10.1007/s00704-008-0055-z

    Article  Google Scholar 

  • Rubin S, Ziv B, Paldor N (2007) Tropical plumes over eastern North Africa as a source of rain in the Middle East. Mon Weather Rev 135:4135–4148

    Article  Google Scholar 

  • Saaroni H, Halfon H, Ziv B, Alpert P, Kutiel H (2010) Links between the rainfall regime in Israel and location and intensity of Cyprus Lows. Int J Climatol 30:1014–1025. https://doi.org/10.1002/joc.1912

    Article  Google Scholar 

  • Samuels R, Hochman A, Baharad A, Givati A, Levi Y, Yosef Y, Saaroni H, Ziv B, Harpaz T, Alpert P (2017) Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi model ensemble. Int J Climatol 38(5):2280–2297. https://doi.org/10.1002/joc.5334

    Article  Google Scholar 

  • Sarris D, Christodoulakis D, Körner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Chang 106(2):203–223

    Article  Google Scholar 

  • Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B, Hall SA, Wilson SD, Duniway MC, Jia G, Pyke DA, Lkhagva A (2017) Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun 8(1):1–9

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Shalev S, Saaroni H, Izsak T, Yair Y, Ziv B (2011) The spatio-temporal distribution of lightning over Israel and the neighboring area and its relation to regional synoptic systems. Nat Hazards Earth Syst Sci Discuss 11:2125–2135. https://doi.org/10.5194/nhess-11-2125-2011

    Article  Google Scholar 

  • Shay-El Y, Alpert P (1991) A diagnostic study of winter diabatic heating in the Mediterranean in relation to cyclone. Quart J Roy Meteor Soc 117:715–747

    Article  Google Scholar 

  • Shohami D, Dayan U, Morin E (2011) Warming and drying of the eastern Mediterranean: additional evidence from trend analysis. J Geophys Res Atmos 116:1–12

    Article  Google Scholar 

  • Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. https://doi.org/10.5194/nhess-11-33-2011

    Article  Google Scholar 

  • Takeshima A, Kim H, Shiogama H, Lierhammer L, Scinocca JF, Seland Ø, Mitchell D (2020) Global aridity changes due to differences in surface energy and water balance between 1.5°C and 2°C warming. Environ Res Lett 15:0940a7. https://doi.org/10.1088/1748-932

    Article  Google Scholar 

  • Toreti A, Xoplaki E, Maraun D, Kuglitsch FG, Wanner H, Luterbacher J (2010) Characterization of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat Hazards Earth Syst Sci 10:1037–1050

    Article  Google Scholar 

  • Tzvetkov E, Assaf G (1982) The Mediterranean heat storage and Israeli precipitation. Water Res 18:1036–1040

    Article  Google Scholar 

  • Ulbrich U, Lionello P, Belušić D et al (2012) Climate and the Mediterranean: synoptic patterns, temperature, precipitation, winds and their extremes. In: Lionello P (ed) The climate of the Mediterranean region: from the past to the future. Elsevier, London, pp 301–346

    Chapter  Google Scholar 

  • Walsh RPD, Lawler DM (1981) Rainfall seasonality: description, spatial patterns and change through time. Weather 36:201–208

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Winkler DE, Belnap J, Hoover D, Reed SC, Duniway MC (2019) Shrub persistence and increased grass mortality in response to drought in dryland systems. Glob Chang Biol 25(9):3121–3135

    Article  Google Scholar 

  • Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Yosef Y, Saaroni H, Alpert P (2009) Trends in daily rainfall intensity over Israel 1950/1-2003/4. The Open Atmos Sci J 3:196–203

    Article  Google Scholar 

  • Yosef Y, Aguilar E, Alpert P (2019) Changes in extreme temperature and precipitation indices: using an innovative daily homogenized database in Israel. Int J Climatol 39(13):5022–5045

    Article  Google Scholar 

  • Ziv B (2001) A subtropical rainstorm associated with a tropical plume over Africa and the Middle East. Theor App Clim 69(1/2):91–102

    Article  Google Scholar 

  • Ziv B, Dayan U, Kushnir Y, Roth C, Enzel Y (2006) Regional and global atmospheric patterns governing rainfall in the southern Levant. Int J Climatol 26:55–73

    Article  Google Scholar 

  • Ziv B, Saaroni H, Pargament R, Harpaz T, Alpert P (2014) Trends in rainfall regime over Israel, 1975-2010, and their relationship to large-scale variability. Reg Environ Chang 14(5):1751–1764

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Israeli Science Foundation (ISF, grant number 2253/20), the Israeli Ministry of Science and Technology (grant number 62596), and the Water Authority of Israel (grant number 4501683730) that helped in funding this study. The authors wish to thank the Israel Meteorological Service and especially Mr. Yizhak Yosef from the Climate Department of the Israel Meteorological Service for providing the homogenized rainfall data and Mrs. Judith Lempert for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadas Saaroni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The prediction equations for the annual rainfall, number of rainy days, and daily rainfall intensity, together with the normalized coefficients (Betas) are presented in Table 4. The predictors are specified in Section 2.

Table 4 Regression equations and normalized coefficients for the rain variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drori, R., Ziv, B., Saaroni, H. et al. Recent changes in the rain regime over the Mediterranean climate region of Israel. Climatic Change 167, 15 (2021). https://doi.org/10.1007/s10584-021-03161-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-021-03161-6

Keywords

Navigation