Skip to main content

Advertisement

Log in

Netrin-1 and RGMa: Novel Regulators of Atherosclerosis-Related Diseases

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Backgrounds

Neuronal guidance proteins (NGPs) have been demonstrated to guide the elongation of neuronal axonal growth cones in the developing central nervous system. Non-neuronal functions of NGPs have also been described, especially in relation to atherosclerosis.

Findings

Netrin-1 and repulsive guidance molecule a (RGMa) are NGPs that have been shown to regulate endothelial cell adhesion and angiogenesis, macrophage migration and apoptosis, smooth muscle cells (SMCs) phenotypic dedifferentiation and mobility, chemokine activities, and inflammatory responses during atherosclerosis initiation and progression.

Purposes

However, mechanistic studies have generated controversy about the specific role of Netrin-1 in atherosclerosis due to the diversity of its structure, receptors and cell sources, and the actions of RGMa in atherosclerosis have not been reported in previous reviews. Therefore, the current work reviews the evidence for roles of Netrin-1 and RGMa in the initiation and progression of atherosclerosis and discusses potential therapeutic targets in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66.

    Article  CAS  PubMed  Google Scholar 

  2. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circulat Res. 2019;124(2):315–27.

    Article  CAS  PubMed  Google Scholar 

  3. Shapiro MD, Fazio S. From lipids to inflammation: new approaches to reducing atherosclerotic risk. Circulat Res. 2016;118(4):732–49.

    Article  CAS  PubMed  Google Scholar 

  4. Hussain A, Ballantyne CM. New approaches for the prevention and treatment of cardiovascular disease: focus on lipoproteins and inflammation. Annual Rev Med. 2021;72:431–46.

    Article  CAS  Google Scholar 

  5. Wentzel JJ, Chatzizisis YS, Gijsen FJ, et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96(2):234–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sansbury BE, Spite M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circulat Res. 2016;119(1):113–30.

    Article  CAS  PubMed  Google Scholar 

  7. Germolec DR, Shipkowski KA, Frawley RP, et al. Markers of inflammation. Methods Mol Biol. 2018;1803:57–79.

    Article  CAS  PubMed  Google Scholar 

  8. Xia X, Hu Z, Wang S, et al. Netrin-1: an emerging player in inflammatory diseases. Cytokine Growth Factor Rev. 2022;64:46–56.

    Article  CAS  PubMed  Google Scholar 

  9. Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

    Article  CAS  PubMed  Google Scholar 

  11. Goodman CS. Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci. 1996;19:341–77.

    Article  CAS  PubMed  Google Scholar 

  12. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274(5290):1123–33.

    Article  CAS  PubMed  Google Scholar 

  13. Mirakaj V, Rosenberger P. Immunomodulatory functions of neuronal guidance proteins. Trends Immunol. 2017;38(6):444–56.

    Article  CAS  PubMed  Google Scholar 

  14. van Gils JM, Ramkhelawon B, Fernandes L, et al. Endothelial expression of guidance cues in vessel wall homeostasis dysregulation under proatherosclerotic conditions. Arterioscler Thromb Vasc Biol. 2013;33(5):911–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Randolph GJ, Gautier EL. Emerging roles of neural guidance molecules in atherosclerosis: sorting out the complexity. Arterioscler Thromb Vasc Biol. 2013;33(5):882–3.

    Article  CAS  PubMed  Google Scholar 

  16. Moore KJ, Fisher EA. Macrophages, atherosclerosis and the potential of Netrin-1 atherosclerosis a novel target for future therapeutic intervention. Future Cardiol. 2012;8(3):349–52.

    Article  CAS  PubMed  Google Scholar 

  17. Claro V, Ferro A. Netrin-1: focus on its role in cardiovascular physiology and atherosclerosis. JRSM Cardiovasc Disease. 2020;9:2048004020959574.

    Google Scholar 

  18. Bruikman CS, van Gils JM. Netrin-1 in coronary artery disease (CAD): mechanism of action and potential atherosclerosis a therapeutic target. Expert Opin Therapeutic Targets. 2019;23(9):729–31.

    Article  CAS  Google Scholar 

  19. Bongo JB, Peng DQ. The neuroimmune guidance cue Netrin-1: a new therapeutic target in cardiovascular disease. J Cardiol. 2014;63(2):95–8.

    Article  PubMed  Google Scholar 

  20. Layne K, Ferro A, Passacquale G. Netrin-1 as a novel therapeutic target in cardiovascular disease: to activate or inhibit? Cardiovasc Res. 2015;107(4):410–9.

    Article  CAS  PubMed  Google Scholar 

  21. Layne K, Goodman T, Ferro A, et al. The effect of aspirin on circulating Netrin-1 levels in humans is dependent on the inflammatory status of the vascular endothelium. Oncotarget. 2017;8(49):86548–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Passacquale G, Phinikaridou A, Warboys C, et al. Aspirin-induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin-1 thus inhibiting monocyte vascular infiltration. Br J Pharmacol. 2015;172(14):3548–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin Z, Jin J, Bai W, et al. Netrin-1 prevents the attachment of monocytes to endothelial cells via an anti-inflammatory effect. Mol Immunol. 2018;103:166–72.

    Article  CAS  PubMed  Google Scholar 

  24. van Gils JM, Derby MC, Fernandes LR, et al. The neuroimmune guidance cue Netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol. 2012;13(2):136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramkhelawon B, Yang Y, van Gils JM, et al. Hypoxia induces Netrin-1 and Unc5b in atherosclerotic plaques: mechanism for macrophage retention and survival. Arterioscler Thromb Vasc Biol. 2013;33(6):1180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang X, Zhang J, Chen L, et al. The role of UNC5b in ox-LDL inhibiting migration of RAW264.7 macrophages and the involvement of CCR7. Biochem Biophys Res Commun. 2018;505(3):637–43.

    Article  CAS  PubMed  Google Scholar 

  27. Khan JA, Cao M, Kang BY, et al. Systemic human Netrin-1 gene delivery by adeno-associated virus type 8 alters leukocyte accumulation and atherogenesis in vivo. Gene Ther. 2011;18(5):437–44.

    Article  CAS  PubMed  Google Scholar 

  28. Yuan X, Xiao H, Hu Q, et al. RGMa promotes dedifferentiation of vascular smooth muscle cells into a macrophage-like phenotype in vivo and in vitro. J Lipid Res. 2022;63(10):100276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun Y, Manceau A, Frydman L, et al. Δ40p53 isoform up-regulates Netrin-1/UNC5B expression and potentiates Netrin-1 pro-oncogenic activity. Proc Natl Acad Sci USA. 2021;118(36):e2103319118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson RA, Griffiths SC, van de Haar LL, et al. Simultaneous binding of guidance cues NET1 and RGM blocks extracellular NEO1 signaling. Cell. 2021;184(8):2103–2120.e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10(9):239.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kennedy TE, Serafini T, de la Torre JR, et al. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994;78(3):425–35.

    Article  CAS  PubMed  Google Scholar 

  33. Cirulli V, Yebra M. Netrins: beyond the brain. Nat Rev Mol Cell Biol. 2007;8(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  34. Delloye-Bourgeois C, Goldschneider D, Paradisi A, et al. Nucleolar localization of a Netrin-1 isoform enhances tumor cell proliferation. Sci Signal. 2012;5(236):ra57.

    Article  PubMed  Google Scholar 

  35. Harter PN, Zinke J, Scholz A, et al. Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases. PLoS One. 2014;9(3):e92311.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ko SY, Blatch GL, Dass CR. Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer. Cancer Metastasis Rev. 2014;33(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  37. Miloudi K, Binet F, Wilson A, et al. Truncated Netrin-1 contributes to pathological vascular permeability in diabetic retinopathy. J Clin Invest. 2016;126(8):3006–22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oksala N, Pärssinen J, Seppälä I, et al. Association of neuroimmune guidance cue Netrin-1 and its chemorepulsive receptor UNC5B with atherosclerotic plaque expression signatures and stability in human(s): Tampere Vascular Study (TVS). Circ Cardiovasc Genet. 2013;6(6):579–87.

    Article  CAS  PubMed  Google Scholar 

  39. Puig O, Yuan J, Stepaniants S, et al. A gene expression signature that classifies human atherosclerotic plaque by relative inflammation status. Circ Cardiovasc Genet. 2011;4(6):595–604.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberger P, Schwab JM, Mirakaj V, et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia [published correction appears in Nat Immunol. 2015 May;16(5):544]. Nat Immunol. 2009;10(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  41. Ly NP, Komatsuzaki K, Fraser IP, et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci U S A. 2005;102(41):14729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aherne CM, Collins CB, Masterson JC, et al. Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut. 2012;61(5):695–705.

    Article  CAS  PubMed  Google Scholar 

  43. Swirski FK, Nahrendorf M, Libby P. The ins and outs of inflammatory cells in atheromata. Cell Metab. 2012;15(2):135–6.

    Article  CAS  PubMed  Google Scholar 

  44. Cynn E, Li DY, O'Reilly ME, et al. Human macrophage long intergenic noncoding RNA, SIMALR, suppresses inflammatory macrophage apoptosis via NTN1 (Netrin-1). Arterioscler Thromb Vasc Biol. 2023;43(2):286–99.

    Article  CAS  PubMed  Google Scholar 

  45. Roufaiel M, Gracey E, Siu A, et al. CCL19-CCR7-dependent reverse transendothelial migration of myeloid cells clears Chlamydia muridarum from the arterial intima. Nat Immunol. 2016;17(11):1263–127 2.

    Article  CAS  PubMed  Google Scholar 

  46. Yang X, Zhang J, Chen L, et al. The role of UNC5b in ox-LDL inhibiting migration of RAW264.7 macrophages and the involvement of CCR7. Biochem Biophys Res Commun. 2018;505(3):637–43.

    Article  CAS  PubMed  Google Scholar 

  47. Hadi T, Boytard L, Silvestro M, et al. Macrophage-derived Netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat Commun. 2018;9(1):5022.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silvestro M, Rivera CF, Alebrahim D, et al. The nonproteolytic intracellular domain of membrane-type 1 matrix metalloproteinase coordinately modulates abdominal aortic aneurysm and atherosclerosis in mice-brief report. Arterioscler Thromb Vasc Biol. 2022;42(10):1244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramkhelawon B, Hennessy EJ, Ménager M, et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med. 2014;20(4):377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma M, Schlegel M, Brown EJ, et al. Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism. 2019;1(2):e190010.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu NM, Siu KL, Youn JY, et al. Attenuation of neointimal formation with Netrin-1 and Netrin-1 preconditioned endothelial progenitor cells. J Mol Med (Berl). 2017;95(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  52. Zeng J, Lu C, Huang H, et al. Effect of recombinant netrin-1 protein combined with peripheral blood mesenchymal stem cells on angiogenesis in rats with arteriosclerosis obliterans. Biomed Res Int. 2022;2022:3361605.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Camaré C, Pucelle M, Nègre-Salvayre A, et al. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18–34.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pelisek J, Well G, Reeps C, et al. Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ J. 2012;76(5):1274–82.

    Article  CAS  PubMed  Google Scholar 

  55. Khan JA, Cao M, Kang BY, et al. Systemic human Netrin-1 gene delivery by adeno-associated virus type 8 alters leukocyte accumulation and as in vivo. Gene Ther. 2011;18(5):437–44.

    Article  CAS  PubMed  Google Scholar 

  56. Bruikman CS, Vreeken D, Hoogeveen RM, et al. Netrin-1 and the grade of atherosclerosis are inversely correlated in humans. Arterioscler Thromb Vasc Biol. 2020;40(2):462–72.

    Article  CAS  PubMed  Google Scholar 

  57. Livesey FJ. Netrins and netrin receptors. Cell Mol Life Sci. 1999;56(1-2):62–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nikolopoulos SN, Giancotti FG. Netrin-integrin signaling in epithelial morphogenesis, axon guidance and vascular patterning. Cell Cycle. 2005;4(3):e131–5.

    Article  PubMed  Google Scholar 

  59. Hong K, Hinck L, Nishiyama M, et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell. 1999;97(7):927–41.

    Article  CAS  PubMed  Google Scholar 

  60. Bruikman CS, Vreeken D, Zhang H, et al. The identification and function of a Netrin-1 mutation in a pedigree with premature atherosclerosis. Atherosclerosis. 2020;301:84–92.

    Article  CAS  PubMed  Google Scholar 

  61. Schlegel M, Moore KJ. A heritable netrin-1 mutation increases atherogenic immune responses. Atherosclerosis. 2020;301:82–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gautier EL, Huby T, Witztum JL, et al. Macrophage apoptosis exerts divergent effects on atherogenesis atherosclerosis a function of lesion stage. Circulation. 2009;119(13):1795–804.

    Article  CAS  PubMed  Google Scholar 

  63. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muñoz JC, Martín R, Alonso C, et al. Relation between serum levels of chemotaxis-related factors and the presence of coronary artery calcification atherosclerosis expression of subclinical atherosclerosis. Clin Biochem. 2017;50(18):1048–55.

    Article  PubMed  Google Scholar 

  65. Schlegel M, Sharma M, Brown EJ, et al. Silencing myeloid netrin-1 induces inflammation resolution and plaque regression. Circ Res. 2021;129(5):530–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu Q, Chen Z, Yuan X, et al. Common polymorphisms in the RGMa promoter are associated with cerebrovascular atherosclerosis burden in chinese han patients with acute ischemic cerebrovascular accident. Front Cardiovasc Med. 2021;8:743868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo D, Zhu Z, Zhong C, et al. Increased serum Netrin-1 is associated with improved prognosis of ischemic stroke. Stroke. 2019;50(4):845–52.

    Article  CAS  PubMed  Google Scholar 

  68. Leocádio P, Menta P, Dias M, et al. High serum Netrin-1 and IL-1β in elderly females with ACS: worse prognosis in 2-years follow-up. Níveis Elevados de Netrina-1 e IL-1β em Mulheres Idosas com SCA: Pior Prognóstico no Acompanhamento de Dois Anos. Arq Bras Cardiol. 2020;114(3):507–14.

    PubMed  PubMed Central  Google Scholar 

  69. Kızmaz M, Marakoğlu K, Kıyıcı A, et al. Plasma Netrin-1 levels significantly increase in smokers. Clin Biochem. 2016;49(10-11):832–4.

    Article  PubMed  Google Scholar 

  70. Mutlu H, Akilli N, Cander B, et al. Effect of serum netrin-1 levels on diagnosis and prognosis in patients admitted to the emergency service for acute coronary syndrome. Cureus. 2020;12(4):e7741.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Figures 1 and 2 were produced by the authors using Figdraw. We acknowledge the work of Home for Researchers (www.home-for-researchers.com).

Funding

This work is supported by the National Natural Science Foundation of China (No. 82071338).

Author information

Authors and Affiliations

Authors

Contributions

Study concept: Xiaofan Yuan, Guanru Shen, and Xinyue Qin. Designed figures: Hongmei Xiao and Zijie Wang. Drafted the manuscript: Xiaofan Yuan, Yue Ma, and Xinyue Qin.

Corresponding author

Correspondence to Xinyue Qin.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Shen, G., Xiao, H. et al. Netrin-1 and RGMa: Novel Regulators of Atherosclerosis-Related Diseases. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07478-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07478-5

Keywords

Navigation