Skip to main content

Advertisement

Log in

The role of bone marrow adipocytes in cancer progression: the impact of obesity

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Bone marrow adipose tissues (BMATs) and their main cellular component, bone marrow adipocytes (BMAds), are found within the bone marrow (BM), which is a niche for the development of hematological malignancies as well as bone metastasis from solid tumors such as breast and prostate cancers. In humans, BMAds are present within the hematopoietic or “red” BMAT and in the “yellow” BMAT where they are more densely packed. BMAds are emerging as new actors in tumor progression; however, there are many outstanding questions regarding their precise role. In this review, we summarized our current knowledge regarding the development, distribution, and regulation by external stimuli of the BMATs in mice and humans and addressed how obesity could affect these traits. We then discussed the specific metabolic phenotype of BMAds that appear to be different from “classical” white adipocytes, since they are devoid of lipolytic function. According to this characterization, we presented how tumor cells affect the in vitro and in vivo phenotype of BMAds and the signals emanating from BMAds that are susceptible to modulate tumor behavior with a specific emphasis on their metabolic crosstalk with cancer cells. Finally, we discussed how obesity could affect this crosstalk. Deciphering the role of BMAds in tumor progression would certainly lead to the identification of new targets in oncology in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V., & Plikus, M. V. (2018). Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism, 27(1), 68–83. https://doi.org/10.1016/j.cmet.2017.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duong, M. N., Geneste, A., Fallone, F., Li, X., Dumontet, C., & Muller, C. (2017). The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget, 8(34), 57622–57641. https://doi.org/10.18632/oncotarget.18038

  3. Lengyel, E., Makowski, L., DiGiovanni, J., & Kolonin, M. G. (2018). Cancer as a matter of fat: The crosstalk between adipose tissue and tumors. Trends in Cancer, 4(5), 374–384. https://doi.org/10.1016/j.trecan.2018.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Attané, C., & Muller, C. (2020). Drilling for oil: Tumor-surrounding adipocytes fueling canceR. Trends in Cancer, 6(7), 593–604. https://doi.org/10.1016/j.trecan.2020.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Morigny, P., Boucher, J., Arner, P., & Langin, D. (2021). Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nature Reviews. Endocrinology, 17(5), 276–295. https://doi.org/10.1038/s41574-021-00471-8

    Article  CAS  PubMed  Google Scholar 

  6. Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends in Pharmacological Sciences, 36(7), 461–470. https://doi.org/10.1016/j.tips.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  8. Calle, E. E., Rodriguez, C., Walker-Thurmond, K., & Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. The New England Journal of Medicine, 348(17), 1625–1638. https://doi.org/10.1056/NEJMoa021423

    Article  PubMed  Google Scholar 

  9. Renehan, A. G., Zwahlen, M., & Egger, M. (2015). Adiposity and cancer risk: New mechanistic insights from epidemiology. Nature Reviews. Cancer, 15(8), 484–498. https://doi.org/10.1038/nrc3967

    Article  CAS  PubMed  Google Scholar 

  10. Kahn, C. R., Wang, G., & Lee, K. Y. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. The Journal of Clinical Investigation, 129(10), 3990–4000. https://doi.org/10.1172/JCI129187

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., … & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492

  12. Nieman, K. M., Romero, I. L., Van Houten, B., & Lengyel, E. (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica Et Biophysica Acta, 1831(10), 1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ye, H., Adane, B., Khan, N., Sullivan, T., Minhajuddin, M., Gasparetto, M., … & Jordan, C. T. (2016). Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 19(1), 23–37. https://doi.org/10.1016/j.stem.2016.06.001

  14. Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., & Goncalves, F. (2017). Bone metastases: An overview. Oncology Reviews, 11(1), 321. https://doi.org/10.4081/oncol.2017.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scheller, E. L., Cawthorn, W. P., Burr, A. A., Horowitz, M. C., & MacDougald, O. A. (2016). Marrow adipose tissue: Trimming the fat. Trends in endocrinology and metabolism: TEM, 27(6), 392–403. https://doi.org/10.1016/j.tem.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  16. Cawthorn, W. P., & Scheller, E. L. (2017). Editorial: Bone marrow adipose tissue: Formation, Function, and impact on health and disease. Frontiers in Endocrinology, 8, 112. https://doi.org/10.3389/fendo.2017.00112

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, Z., Hardij, J., Bagchi, D. P., Scheller, E. L., & MacDougald, O. A. (2018). Development, regulation, metabolism and function of bone marrow adipose tissues. Bone, 110, 134–140. https://doi.org/10.1016/j.bone.2018.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neumann E. (1882). Das Gesetz der Verbreitung des Gelben und rotten Knochenmaarkes. Zentralbl Med Wissensch., pp. 321–323.

  19. Tavassoli, M. (1976). Marrow adipose cells. Histochemical identification of labile and stable components. Archives of Pathology & Laboratory Medicine, 100(1), 16–18.

    CAS  Google Scholar 

  20. Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., … & MacDougald, O. A. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 6(1), 7808. https://doi.org/10.1038/ncomms8808

  21. Styner, M., Pagnotti, G. M., McGrath, C., Wu, X., Sen, B., Uzer, G., … & Rubin, J. (2017). Exercise decreases marrow adipose tissue through ß-oxidation in obese running mice: Exercise decreases mat in obese mice. Journal of Bone and Mineral Research, 32(8), 1692–1702. https://doi.org/10.1002/jbmr.3159

  22. Scheller, E. L., Khandaker, S., Learman, B. S., Cawthorn, W. P., Anderson, L. M., Pham, H. A., … & MacDougald, O. A. (2019). Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone, 118, 32–41. https://doi.org/10.1016/j.bone.2018.01.016

  23. Robles, H., Park, S., Joens, M. S., Fitzpatrick, J. A. J., Craft, C. S., & Scheller, E. L. (2019). Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone, 118, 89–98. https://doi.org/10.1016/j.bone.2018.01.020

    Article  PubMed  Google Scholar 

  24. Tratwal, J., Labella, R., Bravenboer, N., Kerckhofs, G., Douni, E., Scheller, E. L., … Naveiras, O. (2020). Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 11, 65. https://doi.org/10.3389/fendo.2020.00065

  25. Cawthorn, W. P., Scheller, E. L., Learman, B. S., Parlee, S. D., Simon, B. R., Mori, H., … & MacDougald, O. A. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism, 20(2), 368–375. https://doi.org/10.1016/j.cmet.2014.06.003

  26. Justesen, J., Stenderup, K., Ebbesen, E. N., Mosekilde, L., Steiniche, T., & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2(3), 165–171. https://doi.org/10.1023/a:1011513223894

    Article  CAS  PubMed  Google Scholar 

  27. Kricun, M. E. (1985). Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions. Skeletal Radiology, 14(1), 10–19. https://doi.org/10.1007/BF00361188

    Article  CAS  PubMed  Google Scholar 

  28. Blebea, J. S., Houseni, M., Torigian, D. A., Fan, C., Mavi, A., Zhuge, Y., … & Alavi, A. (2007). Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Seminars in Nuclear Medicine, 37(3), 185–194. https://doi.org/10.1053/j.semnuclmed.2007.01.002

  29. Kugel, H., Jung, C., Schulte, O., & Heindel, W. (2001). Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. Journal of magnetic resonance imaging: JMRI, 13(2), 263–268. https://doi.org/10.1002/1522-2586(200102)13:2%3c263::aid-jmri1038%3e3.0.co;2-m

    Article  CAS  PubMed  Google Scholar 

  30. Pansini, V., Monnet, A., Salleron, J., Hardouin, P., Cortet, B., & Cotten, A. (2014). 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex. Journal of magnetic resonance imaging: JMRI, 39(2), 369–376. https://doi.org/10.1002/jmri.24176

    Article  PubMed  Google Scholar 

  31. Griffith, J. F., Yeung, D. K. W., Ma, H. T., Leung, J. C. S., Kwok, T. C. Y., & Leung, P. C. (2012). Bone marrow fat content in the elderly: A reversal of sex difference seen in younger subjects. Journal of magnetic resonance imaging: JMRI, 36(1), 225–230. https://doi.org/10.1002/jmri.23619

    Article  PubMed  Google Scholar 

  32. Suchacki, K. J., Tavares, A. A. S., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., … & Cawthorn, W. P. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 11(1), 3097. https://doi.org/10.1038/s41467-020-16878-2

  33. Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., … & van der Eerden, B. C. J. (2021). Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 12, 744527. https://doi.org/10.3389/fendo.2021.744527

  34. Attané, C., Estève, D., Moutahir, M., Reina, N., & Muller, C. (2021). A protocol for human bone marrow adipocyte isolation and purification. STAR protocols, 2(3), 100629. https://doi.org/10.1016/j.xpro.2021.100629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Attané, C., Estève, D., Chaoui, K., Iacovoni, J. S., Corre, J., Moutahir, M., … & Muller, C. (2020). Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Reports, 30(4), 949-958.e6. https://doi.org/10.1016/j.celrep.2019.12.089

  36. Zechner, R. (2015). FAT FLUX: Enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO molecular medicine, 7(4), 359–362. https://doi.org/10.15252/emmm.201404846

  37. Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., … & Bouxsein, M. L. (2010). Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 25(9), 2078–2088. https://doi.org/10.1002/jbmr.82

  38. Bathija, A., Davis, S., & Trubowitz, S. (1979). Bone marrow adipose tissue: Response to acute starvation. American Journal of Hematology, 6(3), 191–198. https://doi.org/10.1002/ajh.2830060303

    Article  CAS  PubMed  Google Scholar 

  39. Tavassoli, M. (1974). Differential response of bone marrow and extramedullary adipose cells to starvation. Experientia, 30(4), 424–425. https://doi.org/10.1007/BF01921701

    Article  CAS  PubMed  Google Scholar 

  40. Abella, E., Feliu, E., Granada, I., Millá, F., Oriol, A., Ribera, J. M., … & Rozman, C. (2002). Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. American Journal of Clinical Pathology, 118(4), 582–588. https://doi.org/10.1309/2Y7X-YDXK-006B-XLT2

  41. Bredella, M. A., Torriani, M., Ghomi, R. H., Thomas, B. J., Brick, D. J., Gerweck, A. V., … & Miller, K. K. (2011). Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity, 19(1), 49–53. https://doi.org/10.1038/oby.2010.106

  42. Cawthorn, W. P., Scheller, E. L., Parlee, S. D., Pham, H. A., Learman, B. S., Redshaw, C. M. H., … & MacDougald, O. A. (2016). Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology, 157(2), 508–521. https://doi.org/10.1210/en.2015-1477

  43. Ghali, O., Al Rassy, N., Hardouin, P., & Chauveau, C. (2016). Increased bone marrow adiposity in a context of energy deficit: The tip of the iceberg? Frontiers in Endocrinology, 7, 125. https://doi.org/10.3389/fendo.2016.00125

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bartelt, A., Koehne, T., Tödter, K., Reimer, R., Müller, B., Behler-Janbeck, F., … & Niemeier, A. (2017). Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. International Journal of Molecular Sciences, 18(6), E1264. https://doi.org/10.3390/ijms18061264

  45. Ojala, R., Motiani, K. K., Ivaska, K. K., Arponen, M., Eskelinen, J.-J., Virtanen, K. A., & Hannukainen, J. C. (2020). Bone marrow metabolism is impaired in insulin resistance and improves after exercise training. The Journal of Clinical Endocrinology and Metabolism, 105(12), dgaa516. https://doi.org/10.1210/clinem/dgaa516

    Article  PubMed  Google Scholar 

  46. Kozubík, A., Sedláková, A., Pospísil, M., & Petrásek, R. (1988). In vivo studies of the relationship between the activation of lipid metabolism, postirradiation bone marrow cell proliferation and radioresistance of mice. General Physiology and Biophysics, 7(3), 293–302.

    PubMed  Google Scholar 

  47. Pham, T. T., Ivaska, K. K., Hannukainen, J. C., Virtanen, K. A., Lidell, M. E., Enerbäck, S., … Kiviranta, R. (2020). Human bone marrow adipose tissue is a metabolically active and insulin-sensitive distinct fat depot. The Journal of Clinical Endocrinology and Metabolism, 105(7), dgaa216. https://doi.org/10.1210/clinem/dgaa216

  48. Zechner, R., Madeo, F., & Kratky, D. (2017). Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nature Reviews. Molecular Cell Biology, 18(11), 671–684. https://doi.org/10.1038/nrm.2017.76

    Article  CAS  PubMed  Google Scholar 

  49. Sulston, R. J., & Cawthorn, W. P. (2016). Bone marrow adipose tissue as an endocrine organ: Close to the bone? Hormone Molecular Biology and Clinical Investigation, 28(1), 21–38. https://doi.org/10.1515/hmbci-2016-0012

    Article  CAS  PubMed  Google Scholar 

  50. Scheller, E. L., Burr, A. A., MacDougald, O. A., & Cawthorn, W. P. (2016). Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte, 5(3), 251–269. https://doi.org/10.1080/21623945.2016.1149269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uchihashi, K., Aoki, S., Shigematsu, M., Kamochi, N., Sonoda, E., Soejima, H., … & Toda, S. (2010). Organotypic culture of human bone marrow adipose tissue. Pathology International, 60(4), 259–267. https://doi.org/10.1111/j.1440-1827.2010.02511.x

  52. Miggitsch, C., Meryk, A., Naismith, E., Pangrazzi, L., Ejaz, A., Jenewein, B., … & Grubeck-Loebenstein, B. (2019). Human bone marrow adipocytes display distinct immune regulatory properties. eBioMedicine, 46, 387–398. https://doi.org/10.1016/j.ebiom.2019.07.023

  53. Liu, L.-F., Shen, W.-J., Ueno, M., Patel, S., & Kraemer, F. B. (2011). Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics, 12, 212. https://doi.org/10.1186/1471-2164-12-212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mattiucci, D., Maurizi, G., Izzi, V., Cenci, L., Ciarlantini, M., Mancini, S., … & Poloni, A. (2018). Bone marrow adipocytes support hematopoietic stem cell survival. Journal of Cellular Physiology, 233(2), 1500–1511. https://doi.org/10.1002/jcp.26037

  55. Ghaben, A. L., & Scherer, P. E. (2019). Adipogenesis and metabolic health. Nature Reviews. Molecular Cell Biology, 20(4), 242–258. https://doi.org/10.1038/s41580-018-0093-z

    Article  CAS  PubMed  Google Scholar 

  56. Lange, M., Angelidou, G., Ni, Z., Criscuolo, A., Schiller, J., Blüher, M., & Fedorova, M. (2021). AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Reports. Medicine, 2(10), 100407. https://doi.org/10.1016/j.xcrm.2021.100407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yew Tan, C., Virtue, S., Murfitt, S., Roberts, L. D., Robert, L. D., Phua, Y. H., … & Vidal-Puig, A. (2015). Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 5, 18366. https://doi.org/10.1038/srep18366

  58. Laurencikiene, J., Skurk, T., Kulyté, A., Hedén, P., Aström, G., Sjölin, E., … & Arner, P. (2011). Regulation of lipolysis in small and large fat cells of the same subject. The Journal of Clinical Endocrinology and Metabolism, 96(12), E2045-2049. https://doi.org/10.1210/jc.2011-1702

  59. Skurk, T., Alberti-Huber, C., Herder, C., & Hauner, H. (2007). Relationship between adipocyte size and adipokine expression and secretion. The Journal of Clinical Endocrinology and Metabolism, 92(3), 1023–1033. https://doi.org/10.1210/jc.2006-1055

    Article  CAS  PubMed  Google Scholar 

  60. Reilly, S. M., & Saltiel, A. R. (2017). Adapting to obesity with adipose tissue inflammation. Nature Reviews. Endocrinology, 13(11), 633–643. https://doi.org/10.1038/nrendo.2017.90

    Article  CAS  PubMed  Google Scholar 

  61. Liu, L.-F., Shen, W.-J., Ueno, M., Patel, S., Azhar, S., & Kraemer, F. B. (2013). Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes. PLoS ONE, 8(8), e72367. https://doi.org/10.1371/journal.pone.0072367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doucette, C. R., Horowitz, M. C., Berry, R., MacDougald, O. A., Anunciado-Koza, R., Koza, R. A., & Rosen, C. J. (2015). A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. Journal of Cellular Physiology, 230(9), 2032–2037. https://doi.org/10.1002/jcp.24954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J., & Dowling, A. R. (2015). High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Molecular and Cellular Endocrinology, 410, 35–41. https://doi.org/10.1016/j.mce.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  64. Tencerova, M., Figeac, F., Ditzel, N., Taipaleenmäki, H., Nielsen, T. K., & Kassem, M. (2018). High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 33(6), 1154–1165. https://doi.org/10.1002/jbmr.3408

    Article  CAS  Google Scholar 

  65. Bredella, M. A., Gill, C. M., Gerweck, A. V., Landa, M. G., Kumar, V., Daley, S. M., … & Miller, K. K. (2013). Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology, 269(2), 534–541. https://doi.org/10.1148/radiol.13130375

  66. Yu, E. W., Greenblatt, L., Eajazi, A., Torriani, M., & Bredella, M. A. (2017). Marrow adipose tissue composition in adults with morbid obesity. Bone, 97, 38–42. https://doi.org/10.1016/j.bone.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  67. Fazeli, P. K., Bredella, M. A., Pachon-Peña, G., Zhao, W., Zhang, X., Faje, A. T., … & Klibanski, A. (2021). The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight, 6(12), e138636. https://doi.org/10.1172/jci.insight.138636

  68. Bredella, M. A., Buckless, C., Fazeli, P. K., Rosen, C. J., Torriani, M., Klibanski, A., & Miller, K. K. (2021). Bone marrow adipose tissue composition following high-caloric feeding and fasting. Bone, 152, 116093. https://doi.org/10.1016/j.bone.2021.116093

    Article  CAS  PubMed  Google Scholar 

  69. Singhal, V., Torre Flores, L. P., Stanford, F. C., Toth, A. T., Carmine, B., Misra, M., & Bredella, M. A. (2018). Differential associations between appendicular and axial marrow adipose tissue with bone microarchitecture in adolescents and young adults with obesity. Bone, 116, 203–206. https://doi.org/10.1016/j.bone.2018.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  70. Singhal, V., Bose, A., Liang, Y., Srivastava, G., Goode, S., Stanford, F. C., … & Bredella, M. A. (2019). Marrow adipose tissue in adolescent girls with obesity. Bone, 129, 115103. https://doi.org/10.1016/j.bone.2019.115103

  71. Vander Wyst, K. B., Hu, H. H., Peña, A., Olson, M. L., Bailey, S. S., & Shaibi, G. Q. (2021). Bone marrow adipose tissue content in Latino adolescents with prediabetes and obesity. Obesity (Silver Spring, Md.), 29(12), 2100–2107. https://doi.org/10.1002/oby.23279

    Article  CAS  Google Scholar 

  72. da Silva, S. V., Renovato-Martins, M., Ribeiro-Pereira, C., Citelli, M., & Barja-Fidalgo, C. (2016). Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis. Obesity (Silver Spring, Md.), 24(12), 2522–2532. https://doi.org/10.1002/oby.21660

    Article  CAS  Google Scholar 

  73. Tencerova, M., Frost, M., Figeac, F., Nielsen, T. K., Ali, D., Lauterlein, J.-J.L., … & Kassem, M. (2019). Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Reports, 27(7), 2050-2062.e6. https://doi.org/10.1016/j.celrep.2019.04.066

  74. Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., … & Muller, C. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323

  75. Wang, Y. Y., Attané, C., Milhas, D., Dirat, B., Dauvillier, S., Guerard, A., … Muller, C. (2017). Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2(4). https://doi.org/10.1172/jci.insight.87489

  76. Laurent, V., Toulet, A., Attané, C., Milhas, D., Dauvillier, S., Zaidi, F., … & Muller, C. (2019). Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Molecular cancer research: MCR, 17(3), 821–835. https://doi.org/10.1158/1541-7786.MCR-18-0748

  77. Zhang, M., Di Martino, J. S., Bowman, R. L., Campbell, N. R., Baksh, S. C., Simon-Vermot, T., … & White, R. M. (2018). Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discovery, 8(8), 1006–1025. https://doi.org/10.1158/2159-8290.CD-17-1371

  78. Liu, H., He, J., Koh, S. P., Zhong, Y., Liu, Z., Wang, Z., … Yang, J. (2019). Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Science Translational Medicine, 11(494), eaau9087. https://doi.org/10.1126/scitranslmed.aau9087

  79. Trotter, T. N., Gibson, J. T., Sherpa, T. L., Gowda, P. S., Peker, D., & Yang, Y. (2016). Adipocyte-lineage cells support growth and dissemination of multiple myeloma in bone. The American Journal of Pathology, 186(11), 3054–3063. https://doi.org/10.1016/j.ajpath.2016.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fairfield, H., Dudakovic, A., Khatib, C. M., Farrell, M., Costa, S., Falank, C., … & Reagan, M. R. (2021). Myeloma-modified adipocytes exhibit metabolic dysfunction and a senescence-associated secretory phenotype. Cancer Research, 81(3), 634–647. https://doi.org/10.1158/0008-5472.CAN-20-1088

  81. Hudak, C. S., Gulyaeva, O., Wang, Y., Park, S.-M., Lee, L., Kang, C., & Sul, H. S. (2014). Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Reports, 8(3), 678–687. https://doi.org/10.1016/j.celrep.2014.06.060

    Article  CAS  PubMed  Google Scholar 

  82. Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D’Amico, A., … & Reagan, M. R. (2020). Multiple myeloma cells alter adipogenesis, increase senescence-related and inflammatory gene transcript expression, and alter metabolism in preadipocytes. Frontiers in Oncology, 10, 584683. https://doi.org/10.3389/fonc.2020.584683

  83. Boyd, A. L., Reid, J. C., Salci, K. R., Aslostovar, L., Benoit, Y. D., Shapovalova, Z., … & Bhatia, M. (2017). Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 19(11), 1336–1347. https://doi.org/10.1038/ncb3625

  84. Yang, S., Lu, W., Zhao, C., Zhai, Y., Wei, Y., Liu, J., … & Shi, J. (2020). Leukemia cells remodel marrow adipocytes via TRPV4-dependent lipolysis. Haematologica, 105(11), 2572–2583. https://doi.org/10.3324/haematol.2019.225763

  85. Lu, W., Weng, W., Zhu, Q., Zhai, Y., Wan, Y., Liu, H., … & Shi, J. (2018). Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica, 103(1), e21–e24. https://doi.org/10.3324/haematol.2017.173492

  86. Liu, H., Zhai, Y., Zhao, W., Wan, Y., Lu, W., Yang, S., … & Shi, J. (2018). Consolidation chemotherapy prevents relapse by indirectly regulating bone marrow adipogenesis in patients with acute myeloid leukemia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 45(6), 2389–2400. https://doi.org/10.1159/000488225

  87. Heydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., … & Patel, B. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications, 12(1), 5507. https://doi.org/10.1038/s41467-021-25540-4

  88. Gazi, E., Gardner, P., Lockyer, N. P., Hart, C. A., Brown, M. D., & Clarke, N. W. (2007). Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. Journal of Lipid Research, 48(8), 1846–1856. https://doi.org/10.1194/jlr.M700131-JLR200

    Article  CAS  PubMed  Google Scholar 

  89. Shafat, M. S., Oellerich, T., Mohr, S., Robinson, S. D., Edwards, D. R., Marlein, C. R., … & Rushworth, S. A. (2017). Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 129(10), 1320–1332. https://doi.org/10.1182/blood-2016-08-734798

  90. Panaroni, C., Fulzele, K., Mori, T., Siu, K. T., Onyewadume, C., Maebius, A., & Raje, N. (2022). Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood, 139(6), 876–888. https://doi.org/10.1182/blood.2021013832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, W., Wan, Y., Li, Z., Zhu, B., Yin, C., Liu, H., … & Shi, J. (2018). Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. Journal of Experimental & Clinical Cancer Research, 37(1), 66. https://doi.org/10.1186/s13046-018-0738-y

  92. Diedrich, J. D., Rajagurubandara, E., Herroon, M. K., Mahapatra, G., Hüttemann, M., & Podgorski, I. (2016). Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget, 7(40), 64854–64877. https://doi.org/10.18632/oncotarget.11712

  93. Herroon, M. K., Diedrich, J. D., Rajagurubandara, E., Martin, C., Maddipati, K. R., Kim, S., … & Podgorski, I. (2019). Prostate tumor cell-derived il1β induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms. Molecular cancer research: MCR, 17(12), 2508–2521. https://doi.org/10.1158/1541-7786.MCR-19-0540

  94. Herroon, M. K., Rajagurubandara, E., Hardaway, A. L., Powell, K., Turchick, A., Feldmann, D., & Podgorski, I. (2013). Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget, 4(11), 2108–2123. https://doi.org/10.18632/oncotarget.1482

  95. Tabe, Y., Yamamoto, S., Saitoh, K., Sekihara, K., Monma, N., Ikeo, K., … & Andreeff, M. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Research, 77(6), 1453–1464. https://doi.org/10.1158/0008-5472.CAN-16-1645

  96. Ehsanipour, E. A., Sheng, X., Behan, J. W., Wang, X., Butturini, A., Avramis, V. I., & Mittelman, S. D. (2013). Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Research, 73(10), 2998–3006. https://doi.org/10.1158/0008-5472.CAN-12-4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morris, E. V., Suchacki, K. J., Hocking, J., Cartwright, R., Sowman, A., Gamez, B., … & Edwards, C. M. (2020). Myeloma cells down-regulate adiponectin in bone marrow adipocytes via TNF-alpha. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 35(5), 942–955. https://doi.org/10.1002/jbmr.3951

  98. Caers, J., Deleu, S., Belaid, Z., De Raeve, H., Van Valckenborgh, E., De Bruyne, E., … & Vanderkerken, K. (2007). Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia, 21(7), 1580–1584. https://doi.org/10.1038/sj.leu.2404658

  99. Liu, Z., Xu, J., He, J., Liu, H., Lin, P., Wan, X., … Yang, J. (2015). Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget, 6(33), 34329–34341. https://doi.org/10.18632/oncotarget.6020

  100. Yu, W., Cao, D.-D., Li, Q.-B., Mei, H.-L., Hu, Y., & Guo, T. (2016). Adipocytes secreted leptin is a pro-tumor factor for survival of multiple myeloma under chemotherapy. Oncotarget, 7(52), 86075–86086. https://doi.org/10.18632/oncotarget.13342

  101. Templeton, Z. S., Lie, W.-R., Wang, W., Rosenberg-Hasson, Y., Alluri, R. V., Tamaresis, J. S., … & King, B. L. (2015). Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia, 17(12), 849–861. https://doi.org/10.1016/j.neo.2015.11.005

  102. Chen, G.-L., Luo, Y., Eriksson, D., Meng, X., Qian, C., Bäuerle, T., … Bozec, A. (2016). High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget, 7(18), 26653–26669. https://doi.org/10.18632/oncotarget.8474

  103. Guérard, A., Laurent, V., Fromont, G., Estève, D., Gilhodes, J., Bonnelye, E., … & Muller, C. (2021). The chemokine receptor CCR3 is potentially involved in the homing of prostate cancer cells to bone: Implication of bone-marrow adipocytes. International Journal of Molecular Sciences, 22(4), 1994. https://doi.org/10.3390/ijms22041994

  104. Hardaway, A. L., Herroon, M. K., Rajagurubandara, E., & Podgorski, I. (2015). Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clinical & Experimental Metastasis, 32(4), 353–368. https://doi.org/10.1007/s10585-015-9714-5

    Article  CAS  Google Scholar 

  105. Larsson, S. C., & Wolk, A. (2007). Body mass index and risk of multiple myeloma: A meta-analysis. International Journal of Cancer, 121(11), 2512–2516. https://doi.org/10.1002/ijc.22968

    Article  CAS  PubMed  Google Scholar 

  106. Larsson, S. C., & Wolk, A. (2008). Overweight and obesity and incidence of leukemia: A meta-analysis of cohort studies. International Journal of Cancer, 122(6), 1418–1421. https://doi.org/10.1002/ijc.23176

    Article  CAS  PubMed  Google Scholar 

  107. Castillo, J. J., Reagan, J. L., Ingham, R. R., Furman, M., Dalia, S., Merhi, B., … & Mitri, J. (2012). Obesity but not overweight increases the incidence and mortality of leukemia in adults: A meta-analysis of prospective cohort studies. Leukemia Research, 36(7), 868–875. https://doi.org/10.1016/j.leukres.2011.12.020

  108. Dhakal, P., Lyden, E., Lee, A., Michalski, J., Al-Kadhimi, Z. S., Maness, L. J., … & Bhatt, V. R. (2020). Effects of obesity on overall survival of adults with acute myeloid leukemia. Clinical Lymphoma, Myeloma & Leukemia, 20(3), e131–e136. https://doi.org/10.1016/j.clml.2019.11.001

  109. Butturini, A. M., Dorey, F. J., Lange, B. J., Henry, D. W., Gaynon, P. S., Fu, C., … & Carroll, W. L. (2007). Obesity and outcome in pediatric acute lymphoblastic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(15), 2063–2069. https://doi.org/10.1200/JCO.2006.07.7792

  110. Gong, Z., Agalliu, I., Lin, D. W., Stanford, J. L., & Kristal, A. R. (2007). Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer, 109(6), 1192–1202. https://doi.org/10.1002/cncr.22534

    Article  PubMed  Google Scholar 

  111. von Drygalski, A., Tran, T. B., Messer, K., Pu, M., Corringham, S., Nelson, C., & Ball, E. D. (2011). Obesity is an independent predictor of poor survival in metastatic breast cancer: Retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. International Journal of Breast Cancer, 2011, 523276. https://doi.org/10.4061/2011/523276

    Article  Google Scholar 

  112. Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., … & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651

  113. Clement, E., Lazar, I., Attané, C., Carrié, L., Dauvillier, S., Ducoux-Petit, M., … Nieto, L. (2020). Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. The EMBO journal, 39(3), e102525. https://doi.org/10.15252/embj.2019102525

  114. Evangelista, G. C. M., Salvador, P. A., Soares, S. M. A., Barros, L. R. C., da Xavier, F. H., & C., Abdo, L. M., … Gameiro, J. (2019). 4T1 mammary carcinoma colonization of metastatic niches is accelerated by obesity. Frontiers in Oncology, 9, 685. https://doi.org/10.3389/fonc.2019.00685

  115. Yun, J. P., Behan, J. W., Heisterkamp, N., Butturini, A., Klemm, L., Ji, L., … Mittelman, S. D. (2010). Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prevention Research (Philadelphia, Pa.), 3(10), 1259–1264. https://doi.org/10.1158/1940-6207.CAPR-10-0087

Download references

Funding

Work in our team is supported by the “Ligue Nationale contre le Cancer” (Équipe labélisée) and the “Institut National du Cancer” (INCa PLBio 2020–28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Muller or Camille Attané.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, M., Shin, S., Muller, C. et al. The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer Metastasis Rev 41, 589–605 (2022). https://doi.org/10.1007/s10555-022-10042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10042-6

Keywords

Navigation