Skip to main content

Advertisement

Log in

Surface modification of new innocuous Ti–Mo–Zr based alloys for biomedical applications

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

To address the clinical challenges of modulus mismatch, lack of initial osteointegration and contain toxic elements towards traditional titanium and its alloys with surrounding bone tissue, a new β-type titanium alloy (Ti–12Mo–10Zr) designed by our group will be chosen as dental implant in this proposal due to its excellent properties, e.g. low young’s modulus (~ 50.8 GPa) and excellent compressive yield strength (~ 430.89 MPa). A modified hydrothermal and pressure method will be deployed to create tailored micro/nano topography and chemistry (phosphorus) on implant surface with the aim of promoting osteointegration. The formation process and mechanism of micro/nano-scaled hierarchical hybrid coating containing phosphorous will be revealed from the perspective of energetics and crystallography to realize co-design of multiple structure and chemical on Ti–12Mo–10Zr surface. The in vitro cytological performance of this hierarchical hybrid coating containing phosphorous will also be evaluated by co-culturing with rat bone marrow stromal cells This proposal will not only provide guidance and experimental database for next generation potential implant named Ti–12Mo–10Zr, but also display new insights to improve long-lasting stability for dental implant which demonstrate tremendous scientific significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akimoto T, Ueno T, Tsutsumi Y et al (2018) Evaluation of corrosion resistance of implant-use Ti–Zr binary alloys with a range of compositions. J Biomed Mater Res B 106(1):73–79

    Article  CAS  Google Scholar 

  • Bhardwaj T, Shukla M, Prasad NK et al (2020) Direct laser deposition-additive manufacturing of Ti–15Mo alloy: effect of build orientation induced surface topography on corrosion and bioactivity. Met Mater Int 26(7):1015–1029

    Article  CAS  Google Scholar 

  • Biesiekierski A, Ping DH, Yamabe MY et al (2014) Impact of ruthenium on microstructure and corrosion behavior of β-type Ti–Nb–Ru alloys for biomedical applications. Mater Des 59:303–309

    Article  CAS  Google Scholar 

  • Cai BY, Jiang N, Tan PJ et al (2019) Custom making hierarchical micro/nano-scaled titanium phosphate coatings and their formation mechanism analysis. RSC Adv 9(70):41311–41318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Roohani-Esfahani SI, Lu ZF et al (2015) Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts. PLoS ONE 10(1):e0113426

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa D, Kuroda P, Loureno ML et al (2018) Development of Ti–15Zr–Mo alloys for applying as implantable biomedical devices. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.03.308

    Article  Google Scholar 

  • Elias CN, Fernandes DJ, Resende CRS et al (2015) Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dent Mater 31(2):1–13

    Article  Google Scholar 

  • Forum SJJDICE (2015) Prevention, treatment. Implant complications: scope of the problem, pp 1–9

  • Greer A, Goriainov V, Kanczler J et al (2020) Nanopatterned titanium implants accelerate bone formation in vivo. ACS Appl Mater Interfaces 12:33541–33549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross D, Hauger W, Schroder J et al (2018) Engineering mechanics 2: mechanics of materials. Springer, Berlin, pp 79–98

    Book  Google Scholar 

  • Guo ZJ, Zou Q, Wang LJ et al (2014) Biomineralization and cell biological response of polyurethane coatings on titanium surface. Acta Mater Compos Sinica 31(6):1612–1617

    CAS  Google Scholar 

  • Hou Y, Xie W, Yu L et al (2020) Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small. https://doi.org/10.1002/smll.201905422

    Article  PubMed  Google Scholar 

  • Hu ZK, Wang XH, Xia W et al (2019) Nano-structure designing promotion osseointegration of hydroxyapatite coated Ti–6Al–4V alloy implants in diabetic model. J Biomed Nanotechnol 15:1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Ji PF, Li B, Chen BH et al (2020) Effect of Nb addition on the stability and biological corrosion resistance of Ti–Zr alloy passivation films. Corros Sci 170(2):108696

    Article  CAS  Google Scholar 

  • Jiang N, Guo ZJ, Sun D et al (2018) Promoting osseointegration of Ti implants through micro/nanoscaled hierarchical Ti phosphate/Ti oxide hybrid coating. ACS Nano 12:7883–7891

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Singh K (2019) Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C 102:844–862

    Article  CAS  Google Scholar 

  • Kuroda P, Buzalaf MAR, Grandini CR (2016) Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti–20Zr–Mo alloys. Mater Sci Eng C 67(10):511–515

    Article  CAS  Google Scholar 

  • Liu H, Yang J, Zhao X et al (2019) Microstructure, mechanical properties and corrosion behaviors of biomedical Ti–Zr–Mo–xMn alloys for dental application. Corros Sci. https://doi.org/10.1016/j.corsci.2019.108195

    Article  Google Scholar 

  • Mohammed MT (2017) Development of a new metastable beta titanium alloy for biomedical applications. Karbala Int J Mod Sci 3(4):224–230

    Article  Google Scholar 

  • Mohammed MT, Khan ZA, Siddiquee AN (2014) Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int J Chem Nuclear Metall Mater Eng 8(8):726–731

    Google Scholar 

  • Oliveira N, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater 5(1):399–405

    Article  CAS  PubMed  Google Scholar 

  • Pabka B, Mlla B, Drncb C et al (2020) Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications. J Alloys Compd 812(5):152108–152108

    Google Scholar 

  • Park JW, Jang JH, Lee CS et al (2009) Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater 5:2311–2321

    Article  CAS  PubMed  Google Scholar 

  • Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826

    Article  PubMed  Google Scholar 

  • Runa MJ, Mathew MT, Fernandes MH et al (2015) First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater 12:341–351

    Article  CAS  PubMed  Google Scholar 

  • Sumitomo N, Noritake K, Hattori T et al (2005) Experiment study on fracture fixation with low rigidity titanium alloy. J Mater Sci Mater Med 19(4):1581–1586

    Article  Google Scholar 

  • Sumitomo N, Noritake K, Hattori T et al (2008) Experiment study on fracture fixation with low rigidity titanium alloy. J Mater Sci Mater Med 19(4):1581–1586

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Khoon C (2013) Titanium alloys in orthopaedics, pp 17–143

    Google Scholar 

  • Xu JL, Tao SC, Bao LZ et al (2019) Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti–Mo alloys. Mater Sci Eng C 97:156–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Henan Province (222102310441), National Natural Science Foundation of China (52001324), National Science Foundation of Jiangsu Province (BK20200643) and Henan Excellent Youth Science Foundation project (212300410039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Guo.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Lei, K., Sun, C. et al. Surface modification of new innocuous Ti–Mo–Zr based alloys for biomedical applications. Biometals 35, 1271–1280 (2022). https://doi.org/10.1007/s10534-022-00442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-022-00442-0

Keywords

Navigation