Skip to main content

Advertisement

Log in

CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48

    Article  PubMed  Google Scholar 

  2. Allen GW, Howard AR, Jarrard DF, Ritter MA (2007) Management of prostate cancer recurrences after radiation therapy-brachytherapy as a salvage option. Cancer 110:1405–1416

    Article  PubMed  Google Scholar 

  3. Gay HA, Michalski JM (2018) Radiation Therapy for prostate Cancer. Mo Med 115:146–150

    PubMed  PubMed Central  Google Scholar 

  4. Huang RX, Zhou PK (2020) DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 5:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun H, Fan G, Deng C, Wu L (2020) miR-4429 sensitized cervical cancer cells to irradiation by targeting RAD51. J Cell Physiol 235:185–193

    Article  CAS  PubMed  Google Scholar 

  6. Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X (2020) NEDD4 E3 ligase: functions and mechanism in human cancer. Semin Cancer Biol 67:92–101

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Chen T, Li S, Liu W, Wang P, Shang G (2022) Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 86:259–268

    Article  CAS  PubMed  Google Scholar 

  8. Hou B, Chen T, Zhang H, Li J, Wang P, Shang G (2023) The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Front Immunol 14:1123244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100:1276–1291

    Article  CAS  PubMed  Google Scholar 

  10. He W, Meng J (2023) CDC20: a novel therapeutic target in cancer. Am J Transl Res 15:678–693

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu F, Sun Y, Chen J et al (2021) The oncogenic role of APC/C activator protein Cdc20 by an Integrated Pan-Cancer Analysis in Human Tumors. Front Oncol 11:721797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Huang H, Liu A et al (2019) Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of beta-catenin in cancer stem-like cells. EBioMedicine 42:397–407

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gayyed MF, El-Maqsoud NM, Tawfiek ER, El Gelany SA, Rahman MF (2016) A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs: its correlation with tumor grade and stage. Tumour Biol 37:749–762

    Article  CAS  PubMed  Google Scholar 

  14. Shang G, Ma X, Lv G (2018) Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 17:43–52

    Article  CAS  PubMed  Google Scholar 

  15. Wan L, Tan M, Yang J et al (2014) APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell 29:377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harley ME, Allan LA, Sanderson HS, Clarke PR (2010) Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 29:2407–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shirayama M, Toth A, Galova M, Nasmyth K (1999) APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402:203–207

    Article  CAS  PubMed  Google Scholar 

  18. van Zon W, Wolthuis RM (2010) Cyclin A and Nek2A: APC/C-Cdc20 substrates invisible to the mitotic spindle checkpoint. Biochem Soc Trans 38:72–77

    Article  PubMed  Google Scholar 

  19. Wang L, Yang C, Chu M, Wang ZW, Xue B (2021) Cdc20 induces the radioresistance of bladder cancer cells by targeting FoxO1 degradation. Cancer Lett 500:172–181

    Article  CAS  PubMed  Google Scholar 

  20. Banerjee T, Nath S, Roychoudhury S (2009) DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling. Nucleic Acids Res 37:2688–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai L, Song ZX, Wei DP et al (2021) CDC20 and PTTG1 are important biomarkers and potential therapeutic targets for metastatic prostate Cancer. Adv Ther 38:2973–2989

    Article  CAS  PubMed  Google Scholar 

  22. Ding ZY, Wu HR, Zhang JM, Huang GR, Ji DD (2014) Expression characteristics of CDC20 in gastric cancer and its correlation with poor prognosis. Int J Clin Exp Pathol 7:722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng Q, Huang H, Zhu C et al (2022) CDC20 may serve as a potential biomarker-based risk score system in Predicting the prognosis of patients with Hepatocellular Carcinoma. Oxid Med Cell Longev 2022:8421813

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao Y, Wen P, Chen B et al (2020) Downregulation of CDC20 increases radiosensitivity through Mcl-1/p-Chk1-Mediated DNA damage and apoptosis in Tumor cells. Int J Mol Sci 21

  25. Zhao S, Zhang Y, Lu X et al (2021) CDC20 regulates the cell proliferation and radiosensitivity of P53 mutant HCC cells through the Bcl-2/Bax pathway. Int J Biol Sci 17:3608–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Wu L, Cao R et al (2022) Fbxo45 promotes the malignant development of esophageal squamous cell carcinoma by targeting GGNBP2 for ubiquitination and degradation. Oncogene 41:4795–4807

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Yu K, Chen K et al (2022) Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis 13:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Zhou K, Zhu H et al (2023) Current status and progress of the development of prostate cancer vaccines. J Cancer 14:835–842

    Article  PubMed  PubMed Central  Google Scholar 

  29. Murgic J, Frobe A, Kiang Chua ML (2022) Recent advances in Radiotherapy Modalities for prostate Cancer. Acta Clin Croat 61:57–64

    PubMed  PubMed Central  Google Scholar 

  30. Shi J, Chen Y, Gu X, Wang X, Liu J, Chen X (2022) The Prognostic Assessment of CDC20 in patients with renal Clear Cell Carcinoma and its relationship with body immunity. Contrast Media Mol Imaging 2022:7727539

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cheng L, Huang YZ, Chen WX et al (2020) Cell division cycle proteinising prognostic biomarker of breast cancer. Biosci Rep 40

  32. Qiu E, Gao Y, Zhang B, Xia T, Zhang Z, Shang G (2020) Upregulation of cell division cycle 20 in cisplatin resistance-induced epithelial-mesenchymal transition in osteosarcoma cells. Am J Transl Res 12:1309–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W (2015) Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther 151:141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volonte D, Sedorovitz M, Galbiati F (2022) Impaired Cdc20 signaling promotes senescence in normal cells and apoptosis in non-small cell lung cancer cells. J Biol Chem 298:102405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng S, Castillo V, Sliva D (2019) CDC20 associated with cancer metastasis and novel mushroom–derived CDC20 inhibitors with antimetastatic activity. Int J Oncol 54:2250–2256

    CAS  PubMed  Google Scholar 

  36. Ding Y, Zhang C, He L et al (2021) Apcin inhibits the growth and invasion of glioblastoma cells and improves glioma sensitivity to temozolomide. Bioengineered 12:10791–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao Y, Zhang B, Wang Y, Shang G (2018) Cdc20 inhibitor apcin inhibits the growth and invasion of osteosarcoma cells. Oncol Rep 40:841–848

    CAS  PubMed  Google Scholar 

  38. Das T, Roy KS, Chakrabarti T, Mukhopadhyay S, Roychoudhury S (2014) Withaferin a modulates the spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines. Biochem Pharmacol 91:31–39

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Guo C, Fu S, Cheng Y, Song C (2021) Downregulation of CDC20 suppressed cell proliferation, induced apoptosis, triggered cell cycle arrest in osteosarcoma cells, and enhanced chemosensitivity to cisplatin. Neoplasma 68:382–390

    Article  CAS  PubMed  Google Scholar 

  40. Simpson P (1983) Maternal-zygotic gene interactions during formation of the Dorsoventral Pattern in Drosophila embryos. Genetics 105:615–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F et al (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15:42–46

    Article  PubMed  Google Scholar 

  42. Zhao Z, Rahman MA, Chen ZG, Shin DM (2017) Multiple biological functions of Twist1 in various cancers. Oncotarget 8:20380–20393

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Ling MT, Guan XY et al (2004) Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23:474–482

    Article  PubMed  Google Scholar 

  44. Zhuo X, Chang A, Huang C et al (2015) Nanoparticle-mediated down-regulation of TWIST increases radiosensitivity of nasopharyngeal carcinoma cells via ERK pathway. Am J Cancer Res 5:1571–1579

    PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Li L, Zeng J et al (2012) Twist confers chemoresistance to anthracyclines in bladder cancer through upregulating P-glycoprotein. Chemotherapy 58:264–272

    Article  CAS  PubMed  Google Scholar 

  46. Xiong H, Nie X, Zou Y et al (2017) Twist1 enhances Hypoxia Induced Radioresistance in Cervical Cancer cells by promoting Nuclear EGFR localization. J Cancer 8:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by CNNC science fund for talented young scholars (51010), and Suzhou Science and Technology Development Project (SYS2020139).

Author information

Authors and Affiliations

Authors

Contributions

CY, YG and YZ wrote the manuscript and performed experiments. MX, LJ, YW and XX performed the statistical analyses and edited the manuscript. BX and ZW conceived the experiemnts. LW conceived and designed the experiments, supervised the study, and revised the manuscript.

Corresponding authors

Correspondence to Zhiwei Wang or Lixia Wang.

Ethics declarations

Ethical approval

All animal studies were approved by the Animal Experimentation Ethical Committee of Soochow University.

Competing interests

The authors have declared that no competing interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Ge, Y., Zang, Y. et al. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 28, 1584–1595 (2023). https://doi.org/10.1007/s10495-023-01877-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01877-7

Keywords

Navigation