Skip to main content
Log in

Cuproptosis-related LncRNA signatures as a prognostic model for head and neck squamous cell carcinoma

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cuproptosis is a novel, distinct form of regulated cell death. However, little is known about the role of cuproptosis-related lncRNAs (CRlncRNAs) in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify a CRlncRNAs signature, explore its prognostic value in HNSCC. RNA-seq data and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) database, and cuproptosis-related genes were identified from a search of the relevant candidate-gene literature. Analysis of differentially expressed lncRNAs (DElncRNAs) was performed using the R package “edgeR”. The intersection of the lncRNAs between DElncRNAs and CRlncRNAs was obtained using the R package “Venn Diagram”. Univariate Cox regression was used to identify cuproptosis-related prognostic lncRNAs. LASSO-Cox method was used to narrow these cuproptosis-related prognostic lncRNAs and construct a prognostic model. Multiple statistical methods were used to evaluate the predictive ability of the model. Moreover, the relationships between the model and immune cell subpopulations, related functions and pathways and drug sensitivity were explored. Then, two risk groups were established according to the risk score calculated by the CRlncRNAs signature included three lncRNAs. In HNSCC patients, the risk score was a better predictor of survival than traditional clinicopathological features. In addition, significant differences in immune cells such as B cells, T cells and macrophages were observed between the two groups. Finally, the high-risk group had a lower IC50 for certain chemotherapeutic agents, such as cisplatin and cetuximab. This 3 CRlncRNAs signature is a powerful prognostic biomarker for predicting clinical outcomes and therapeutic responses in HNSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The dataset analyzed in this study is available from the TCGA database. These data can be found here: https://portal.gdc.cancer.gov/. More detailed data is available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  3. Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, Bruce JY, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD, Eisele DW, Fenton M, Foote RL, Galloway T, Gillison ML, Haddad RI, Hicks WL, Hitchcock YJ, Jimeno A, Leizman D, Maghami E, Mell LK, Mittal BB, Pinto HA, Ridge JA, Rocco JW, Rodriguez CP, Shah JP, Weber RS, Weinstein G, Witek M, Worden F, Yom SS, Zhen W, Burns JL, Darlow SD (2020) Head and Neck Cancers, Version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 18:873–898. https://doi.org/10.6004/jnccn.2020.0031

    Article  PubMed  Google Scholar 

  4. Liu J, Zhao J, Xu J, Sun Q, Qin X, Chen G, Gao T, Bai G, Guo Z (2022) SPINK5 is a prognostic biomarker associated with the progression and prognosis of laryngeal squamous cell carcinoma identified by weighted gene co-expression network analysis. Evol Bioinform 18:1–13. https://doi.org/10.1177/11769343221077118

    Article  Google Scholar 

  5. Gatta G, Botta L, Sanchez MJ, Anderson LA, Pierannunzio D, Licitra L (2015) Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: the EUROCARE-5 population-based study. Eur J Cancer 51:2130–2143. https://doi.org/10.1016/j.ejca.2015.07.043

    Article  PubMed  Google Scholar 

  6. Specenier P, Vermorken JB (2018) Optimizing treatments for recurrent or metastatic head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 18:901–915. https://doi.org/10.1080/14737140.2018.1493925

    Article  CAS  PubMed  Google Scholar 

  7. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32:417–418. https://doi.org/10.1038/s41422-022-00653-7

    Article  PubMed  Google Scholar 

  9. Li SR, Bu LL, Cai L (2022) Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther 7:158. https://doi.org/10.1038/s41392-022-01014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cobine PA, Brady DC (2022) Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell 82:1786–1787. https://doi.org/10.1016/j.molcel.2022.05.001

    Article  CAS  PubMed  Google Scholar 

  11. Bian Z, Fan R, Xie L (2022) A novel cuproptosis-related prognostic gene signature and validation of differential expression in clear cell renal cell carcinoma. Genes (Basel). https://doi.org/10.3390/genes13050851

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinform 14:42–54. https://doi.org/10.1016/j.gpb.2015.09.006

    Article  Google Scholar 

  14. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, Li X, Li G, Zeng Z, Xiong W (2020) Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer 19:22. https://doi.org/10.1186/s12943-020-1147-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36:5661–5667. https://doi.org/10.1038/onc.2017.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang R, Ma Z, Feng L, Yang Y, Tan C, Shi Q, Lian M, He S, Ma H, Fang J (2018) LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol Cancer 17:162. https://doi.org/10.1186/s12943-018-0916-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang G, Sun J, Zhang X (2022) A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma. Sci Rep 12:11325. https://doi.org/10.1038/s41598-022-15251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773. https://doi.org/10.1093/nar/gky955

    Article  CAS  PubMed  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35. https://doi.org/10.1186/1471-2105-12-35

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brunson JC (2020) Ggalluvial: layered grammar for alluvial plots. J Open Source Softw 5:2017

    Article  Google Scholar 

  23. Kamarudin AN, Cox T, Kolamunnage-Dona R (2017) Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Med Res Methodol 17:53. https://doi.org/10.1186/s12874-017-0332-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. https://doi.org/10.1016/j.cell.2014.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  29. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558. https://doi.org/10.1038/s41591-018-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geeleher P, Cox N, Huang RS (2014) pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE 9:e107468. https://doi.org/10.1371/journal.pone.0107468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kampel L, Dorman A, Horowitz G, Fliss DM, Gutfeld O, Muhanna N (2021) Surgically treated advanced cutaneous squamous cell carcinoma of the head and neck: outcome predictors and the role of adjuvant radiation therapy. Ann Otol Rhinol Laryngol 130:1016–1023. https://doi.org/10.1177/0003489421990182

    Article  PubMed  Google Scholar 

  32. Lacas B, Carmel A, Landais C, Wong SJ, Licitra L, Tobias JS, Burtness B, Ghi MG, Cohen EEW, Grau C, Wolf G, Hitt R, Corvò R, Budach V, Kumar S, Laskar SG, Mazeron JJ, Zhong LP, Dobrowsky W, Ghadjar P, Fallai C, Zakotnik B, Sharma A, Bensadoun RJ, Ruo Redda MG, Racadot S, Fountzilas G, Brizel D, Rovea P, Argiris A, Nagy ZT, Lee JW, Fortpied C, Harris J, Bourhis J, Aupérin A, Blanchard P, Pignon JP (2021) Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother Oncol 156:281–293. https://doi.org/10.1016/j.radonc.2021.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen QN, Wei CC, Wang ZX, Sun M (2017) Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 8:1925–1936. https://doi.org/10.18632/oncotarget.12461

    Article  PubMed  Google Scholar 

  34. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. https://doi.org/10.1016/j.immuni.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schreibelt G, Bol KF, Aarntzen EH, Gerritsen WR, Punt CJ, Figdor CG, de Vries IJ (2013) Importance of helper T-cell activation in dendritic cell-based anticancer immunotherapy. Oncoimmunology 2:e24440. https://doi.org/10.4161/onci.24440

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, Hida Y, Oshikiri T, Kurokawa T, Suzuoki M, Nakakubo Y, Hiraoka K, Murakami S, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63:1555–1559

    CAS  PubMed  Google Scholar 

  37. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kruger S, Ilmer M, Kobold S, Cadilha BL, Endres S, Ormanns S, Schuebbe G, Renz BW, D’Haese JG, Schloesser H, Heinemann V, Subklewe M, Boeck S, Werner J, von Bergwelt-Baildon M (2019) Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res 38:268. https://doi.org/10.1186/s13046-019-1266-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982. https://doi.org/10.1200/jco.2014.59.4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington KJ, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Docampo LCI, Haddad R, Rordorf T, Kiyota N, Tahara M, Lynch M, Jayaprakash V, Li L, Gillison ML (2018) Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 81:45–51. https://doi.org/10.1016/j.oraloncology.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen LF, Zhou SH, Guo Y (2020) Role of GLUT-1 in the upregulation of PD-L1 expression after radiotherapy and association of PD-L1 with favourable overall survival in hypopharyngeal cancer. Onco Targets Ther 13:11221–11235. https://doi.org/10.2147/ott.S269767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the TCGA database for providing their platforms and the contributors for uploading their meaningful datasets.

Funding

This work was supported by the Hospital-level Project of QingPu Branch of Zhongshan Hospital Affiliated to Fudan University (QYT2021-02) and the Project of Health Commission (W2021-09, QingPu District, Shanghai, P.R. China).

Author information

Authors and Affiliations

Authors

Contributions

JL and QS designed the study and drafted the manuscript. XQ, JZ, and TG provided the statistical software and performed the data analysis. YX and GC arranged the figures and tables. GB and ZG reviewed and revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

No potential conflicts of interest were reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Qin, X., Zhao, J. et al. Cuproptosis-related LncRNA signatures as a prognostic model for head and neck squamous cell carcinoma. Apoptosis 28, 247–262 (2023). https://doi.org/10.1007/s10495-022-01790-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01790-5

Keywords

Navigation