Skip to main content
Log in

Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Recently, radioresistant cancer cells surviving radiotherapy have been suggested to show more aggressive phenotypes than parental cells, and the underlying mechanisms may be associated with cancer stem cells. This study provided novel mechanistic insights for E3 ubiquitin ligase CHIP in stem cell properties and radioresistance of non-small cell lung cancer (NSCLC). After bioinformatic prediction for key genes involved, NSCLC tissues and cells were collected to measure the expression of CHIP and PBK. E3 ubiquitin ligase CHIP was poorly expressed, while PBK was highly expressed in NSCLC tissues and cells. CHIP reduced the protein stability of PBK through the ubiquitin-protease pathway to repress the activation of ERK pathway. Based on the gain- or loss-of-function experiments, it was noted that restoration of CHIP curtailed stem cell properties and radioresistance in NSCLC, as manifested by inhibited sphere formation and cell proliferation, decreased number of CD133+CD44+ cells and expression of OCT4, SOX2, and NANOG, as well as facilitated apoptosis of NSCLC cells. Besides, in vivo animal experiments further confirmed that CHIP restrained tumorigenic ability and improved radiosensitivity of NSCLC cells by inhibiting PBK/ERK axis. Collectively, CHIP suppressed stem cell properties and radioresistance of NSCLC cells by inhibiting PBK/ERK axis, therefore offering a potential therapeutic target for enhancing efficacy of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available on request from the corresponding author upon reasonable request.

Abbreviations

NSCLC:

Non-small cell lung cancer

CSCs:

Cancer stem cells

PBK:

PDZ-binding kinase

LNX:

Ligand of numb protein X

ERK:

Extracellular signal-regulated kinase

AJCC:

American Association of Cancer

RPMI:

Roswell Park Memorial Institute

FBS:

Fetal Bovine Serum

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

RIPA:

Radio Immunoprecipitation Assay

BCA:

Bicinchoninic acid

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene fluoride

EC:

Enhanced chemiluminescence

Co-IP:

Co-immunoprecipitation

PBS:

Phosphate buffered saline

CCK-8:

Cell counting kit-8

OD:

Optical density

ANOVA:

Analysis of variance

References

  1. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS (2021) Lung cancer. Lancet 398(10299):535–554

    Article  PubMed  Google Scholar 

  2. The L (2019) Lung cancer: some progress, but still a lot more to do. Lancet 394(10212):1880

    Article  Google Scholar 

  3. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454

    Article  CAS  PubMed  Google Scholar 

  4. Relli V, Trerotola M, Guerra E, Alberti S (2019) Abandoning the notion of non-small cell lung cancer. Trends Mol Med 25(7):585–594

    Article  PubMed  Google Scholar 

  5. Osmani L, Askin F, Gabrielson E, Li QK (2018) Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol 52(Pt 1):103–109

    Article  CAS  PubMed  Google Scholar 

  6. Suresh K, Naidoo J, Lin CT, Danoff S (2018) Immune checkpoint immunotherapy for non-small cell lung cancer: benefits and pulmonary toxicities. Chest 154(6):1416–1423

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grant MJ, Herbst RS, Goldberg SB (2021) Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 18(10):625–644

    Article  PubMed  Google Scholar 

  8. Hatton MQ, Martin JE (2010) Continuous hyperfractionated accelerated radiotherapy (CHART) and non-conventionally fractionated radiotherapy in the treatment of non-small cell lung cancer: a review and consideration of future directions. Clin Oncol (R Coll Radiol) 22(5):356–364

    Article  CAS  PubMed  Google Scholar 

  9. Hendriks LEL, De Ruysscher DKM (2022) Postoperative radiotherapy in resected N2 non-small-cell lung cancer: lung ART. Lancet Oncol 23(1):8–9

    Article  PubMed  Google Scholar 

  10. Fang P, Swanick CW, Pezzi TA, Liao Z, Welsh J, Lin SH, Gomez DR (2017) Outcomes and toxicity following high-dose radiation therapy in 15 fractions for non-small cell lung cancer. Pract Radiat Oncol 7(6):433–441

    Article  PubMed  Google Scholar 

  11. Tang X, Li Y, Tian X, Zhou X, Wang Y, Huang M, Ren L, Zhou L, Xue J, Ding Z, Zhu J, Xu Y, Peng F, Wang J, Lu Y, Gong Y (2019) Predicting severe acute radiation pneumonitis in patients with non-small cell lung cancer receiving postoperative radiotherapy: development and internal validation of a nomogram based on the clinical and dose-volume histogram parameters. Radiother Oncol 132:197–203

    Article  PubMed  Google Scholar 

  12. Baker S, Dahele M, Lagerwaard FJ, Senan S (2016) A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol 11(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo Y, Wang G, Wang Z, Ding X, Qian L, Li Y, Ren Z, Liu P, Ma W, Li D, Li Y, Zhao Q, Lu J, Li Q, Wang Q, Yu Z (2021) Reck-Notch1 signaling mediates miR-221/222 regulation of lung cancer stem cells in NSCLC. Front Cell Dev Biol 9:663279

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35

    Article  CAS  PubMed  Google Scholar 

  16. Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chivu-Economescu M, Necula LG, Matei L, Dragu DL, Neagu AI, Alexiu I, Bleotu C, Diaconu CC (2020) Gastrointestinal cancer stem cells as targets for innovative immunotherapy. World J Gastroenterol 26(14):1580–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castagnoli L, De Santis F, Volpari T, Vernieri C, Tagliabue E, Di Nicola M, Pupa SM (2020) Cancer stem cells: devil or savior-looking behind the scenes of immunotherapy failure. Cells 9(3):555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei X, He Q, Li Z, Zou Q, Xu P, Yu H, Ding Y, Zhu W (2021) Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med Oncol 38(4):43

    Article  PubMed  Google Scholar 

  20. Das PK, Zahan T, Abdur Rakib M, Khanam JA, Pillai S, Islam F (2019) Natural compounds targeting cancer stem cells: a promising resource for chemotherapy. Anticancer Agents Med Chem 19(15):1796–1808

    Article  CAS  PubMed  Google Scholar 

  21. Deng K, Liu L, Tan X, Zhang Z, Li J, Ou Y, Wang X, Yang S, Xiang R, Sun P (2020) WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther 5(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II (2018) Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 53:156–167

    Article  CAS  PubMed  Google Scholar 

  23. Najafi M, Mortezaee K, Majidpoor J (2019) Cancer stem cell (CSC) resistance drivers. Life Sci 234:116781

    Article  CAS  PubMed  Google Scholar 

  24. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545–554

    Article  CAS  PubMed  Google Scholar 

  26. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME (2020) Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 60:166–180

    Article  CAS  PubMed  Google Scholar 

  28. Cui YH, Kang JH, Suh Y, Zhao Y, Yi JM, Bae IH, Lee HJ, Park DW, Kim MJ, Lee SJ (2021) Loss of FBXL14 promotes mesenchymal shift and radioresistance of non-small cell lung cancer by TWIST1 stabilization. Signal Transduct Target Ther 6(1):272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao M, Yan M, Zhang J, Xu Q, Qi S, Wang X, Chen W (2017) Cancer stem-like cell related protein CD166 degrades through E3 ubiquitin ligase CHIP in head and neck cancer. Exp Cell Res 353(1):46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang T, Wang W, Wang Q, Xie R, Landay A, Chen D (2020) The E3 ubiquitin ligase CHIP in normal cell function and in disease conditions. Ann N Y Acad Sci 1460(1):3–10

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Chung JY, Park YS, Jang SJ, Kim HR, Choi CM, Song JS (2020) Prognostic significance of CHIP and RIPK3 in non-small cell lung cancer. Cancers (Basel) 12(6):1496

    Article  CAS  PubMed  Google Scholar 

  32. Guo Z, Song E, Ma S, Wang X, Gao S, Shao C, Hu S, Jia L, Tian R, Xu T, Gao Y (2012) Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase. J Proteome Res 11(10):4847–4862

    Article  CAS  PubMed  Google Scholar 

  33. Han Z, Li L, Huang Y, Zhao H, Luo Y (2021) PBK/TOPK: A therapeutic target worthy of attention. Cells 10(2):371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park JH, Park SA, Lee YJ, Park HW, Oh SM (2020) PBK attenuates paclitaxel-induced autophagic cell death by suppressing p53 in H460 non-small-cell lung cancer cells. FEBS Open Bio 10(5):937–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma H, Han F, Yan X, Qi G, Li Y, Li R, Yan S, Yuan C, Song K, Kong B (2021) PBK promotes aggressive phenotypes of cervical cancer through ERK/c-Myc signaling pathway. J Cell Physiol 236(4):2767–2781

    Article  CAS  PubMed  Google Scholar 

  36. Du R, Shen W, Liu Y, Gao W, Zhou W, Li J, Zhao S, Chen C, Chen Y, Liu Y, Sun P, Xiang R, Shi Y, Luo Y (2019) TGIF2 promotes the progression of lung adenocarcinoma by bridging EGFR/RAS/ERK signaling to cancer cell stemness. Signal Transduct Target Ther 4:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao L, Yang T, Zhang S, Liang Y, Shi P, Ren H, Hou P, Chen M (2021) EHF enhances malignancy by modulating AKT and MAPK/ERK signaling in nonsmall cell lung cancer cells. Oncol Rep 45(6):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang Y, Liu J, He J, Hu Z, Tan F, Zhu X, Yuan F, Jiang Z (2022) UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci 12(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fu W, Zhao J, Hu W, Dai L, Jiang Z, Zhong S, Deng B, Huang Y, Wu W, Yin J (2021) LINC01224/ZNF91 promote stem cell-like properties and drive radioresistance in non-small cell lung cancer. Cancer Manag Res 13:5671–5681

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tingting Q, Jiao W, Qingfeng W, Yancheng L, Shijun YU, Zhaoqi W, Dongmei S, ShiLong W (2016) CHIP involves in non-small cell lung cancer prognosis through VEGF pathway. Biomed Pharmacother 83:271–276

    Article  PubMed  Google Scholar 

  41. Tsuchiya M, Nakajima Y, Hirata N, Morishita T, Kishimoto H, Kanda Y, Kimura K (2014) Ubiquitin ligase CHIP suppresses cancer stem cell properties in a population of breast cancer cells. Biochem Biophys Res Commun 452(4):928–932

    Article  CAS  PubMed  Google Scholar 

  42. Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, Wang SP, Nesvizhskii AI, Chen YJ, Hong TM, Yang PC (2014) GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene 33(24):3172–3182

    Article  CAS  PubMed  Google Scholar 

  43. Xiao Y, Feng M, Ran H, Han X, Li X (2018) Identification of key differentially expressed genes associated with nonsmall cell lung cancer by bioinformatics analyses. Mol Med Rep 17(5):6379–6386

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mao P, Bao G, Wang YC, Du CW, Yu X, Guo XY, Li RC, Wang MD (2020) PDZ-binding kinase-dependent transcriptional regulation of CCNB2 promotes tumorigenesis and radio-resistance in glioblastoma. Transl Oncol 13(2):287–294

    Article  PubMed  Google Scholar 

  45. Han J, Liu Y, Yang S, Wu X, Li H, Wang Q (2021) MEK inhibitors for the treatment of non-small cell lung cancer. J Hematol Oncol 14(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yuan L, Yi HM, Yi H, Qu JQ, Zhu JF, Li LN, Xiao T, Zheng Z, Lu SS, Xiao ZQ (2016) Reduced RKIP enhances nasopharyngeal carcinoma radioresistance by increasing ERK and AKT activity. Oncotarget 7(10):11463–11477

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BT and JZ designed the study. BT and HM collated the data, carried out data analyses and produced the initial draft of the manuscript. WW and YY contributed to drafting the manuscript. JZ contributed to revising the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Bo Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the Ethics Committee of The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. All patients signed written informed consent before the collection of lung tissues and information. All procedures of experimental animals were in line with the Guide for the Care and Use of Laboratory Animals.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 265 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Zhang, J., Wang, W. et al. Tumor-suppressive E3 ubiquitin ligase CHIP inhibits the PBK/ERK axis to repress stem cell properties and radioresistance in non-small cell lung cancer. Apoptosis 28, 397–413 (2023). https://doi.org/10.1007/s10495-022-01789-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01789-y

Keywords

Navigation