Skip to main content
Log in

Weak-strong uniqueness for three dimensional incompressible active liquid crystals

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The hydrodynamics of active liquid crystal models has attracted much attention in recent years due to many applications of these models. In this paper, we study the weak-strong uniqueness for the Leray-Hopf type weak solutions to the incompressible active liquid crystals in ℝ3. Our results yield that if there exists a strong solution, then it is unique among the Leray-Hopf type weak solutions associated with the same initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Albritton D, Brué E, Colombo M. Non-uniqueness of Leray solutions of the forced Navier-Stokes equations. Annals of Mathematics, 2022, 196(1): 415–455

    Article  MathSciNet  Google Scholar 

  2. De Anna F, Zarnescu A. Uniqueness of weak solutions of the full coupled Navier-Stokes and Q-tensor system in 2D. Communications in Mathematical Sciences, 2016, 14(8): 2127–2178

    Article  MathSciNet  Google Scholar 

  3. Buckmaste T, Vicol V. Convex integration constructions in hydrodynamics. Bulletin of the American Mathematical Society, 2021, 58(1): 1–44

    Article  MathSciNet  Google Scholar 

  4. Berselli L C. On a regularity criterion for the solutions to the 3D Navier-Stokes equations. Differential Integral Equations, 2002, 15: 1129–1137

    Article  MathSciNet  Google Scholar 

  5. Buckmaster T, Vicol V. Nonuniqueness of weak solutions to the Navier-Stokes equation. Annals of Mathematics, 2019, 189(1): 101–144

    Article  MathSciNet  Google Scholar 

  6. Buckmaster T, Vicol V. Convex integration and phenomenologies in turbulence. EMS Surveys in Mathematical Sciences, 2020, 6(1): 173–263

    Article  MathSciNet  Google Scholar 

  7. Cheskidov A, Luo X. Sharp nonuniqueness for the Navier-Stokes equations. Inventiones Mathematicae, 2022, 229(3): 987–1054

    Article  MathSciNet  Google Scholar 

  8. Cheskidov A, Luo X. L2-critical nonuniqueness for the 2D Navier-Stokes equations. Annals of PDE, 2023, 9 (2): Art 13

  9. Chen G Q, Majumdar A, Wang D, Zhang R. Global weak solutions for the compressible active liquid crystal system. SIAM Journal on Mathematical Analysis, 2018, 50(4): 3632–3675

    Article  MathSciNet  Google Scholar 

  10. Chen Y, Wang D, Zhang R. On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817–3832

    Article  MathSciNet  Google Scholar 

  11. Chen G Q, Majumdar A, Wang D, Zhang R. Global existence and regularity of solutions for active liquid crystals. Journal of Differential Equations, 2017, 263(1): 202–239

    Article  MathSciNet  Google Scholar 

  12. Dong H, Du D. The Navier-Stokes equations in the critical Lebesgue space. Communications in Mathematical Physics, 2009, 292(3): 811–827

    Article  MathSciNet  Google Scholar 

  13. Du H, Hu X, Wang C. Suitable weak solutions for the co-rotational Beris-Edwards system in dimension three. Archive for Rational Mechanics and Analysis, 2020, 238(2): 749–803

    Article  MathSciNet  Google Scholar 

  14. Escauriaza L, Seregin G A, Šverák V. L3,∞-solutions of the Navier-Stokes equations and backward uniqueness. Russian Mathematical Surveys, 2003, 58(2): 211–250

    Article  MathSciNet  Google Scholar 

  15. Fabes E B, Jones B F, Riviére N M. The initial value problem for the Navier-Stokes equations with data in Lp. Archive for Rational Mechanics and Analysis, 1972, 45(3): 222–240

    Article  MathSciNet  Google Scholar 

  16. Giomi L, Bowick M J, Ma X, Marchetti M C. Defect annihilation and proliferation in active nematics. Physical Review Letters, 2013, 110(22): 228101

    Article  Google Scholar 

  17. Giomi L, Mahadevan L, Chakraborty B, Hagan M F. Excitable patterns in active nematics. Physical Review Letters, 2011, 106(21): 218101

    Article  Google Scholar 

  18. Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. Journal of Differential Equations, 1986, 62(2): 186–212

    Article  MathSciNet  Google Scholar 

  19. Galdi G P, Heywood J G, Rannacher R. Fundamental Directions in Mathematical Fluid Mechanics. Basle: Birkhäuser, 2012

    Google Scholar 

  20. Guillén-González F, Rodríguez-Bellido M A. Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals. Nonlinear Analysis: Theory, Methods & Applications, 2015, 112: 84–104

    Article  MathSciNet  Google Scholar 

  21. De Gennes P G, Prost J. The Physics of Liquid Crystals. Oxford: Oxford University Press, 1995

    Google Scholar 

  22. Hopf E. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet. Mathematische Nachrichten, 1950, 4: 213–231

    Article  Google Scholar 

  23. Huang J R, Ding S J. Global well-posedness for the dynamical Q-tensor model of liquid crystals. Science China Mathematics, 2015, 58: 1349–1366

    Article  MathSciNet  Google Scholar 

  24. Huang T. Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals. Analysis and Applications, 2016, 14(4): 523–536

    Article  MathSciNet  Google Scholar 

  25. Jia H, Sverak V. Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?. Journal of Functional Analysis, 2015, 268(12): 3734–3766

    Article  MathSciNet  Google Scholar 

  26. Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis, 1996, 16: 255–271

    Article  MathSciNet  Google Scholar 

  27. Kato T. Strong Lp-solutions of the Navier-Stokes equation in ℝm, with applications to weak solutions. Mathematische Zeitschrift, 1984, 187(4): 471–480

    Article  MathSciNet  Google Scholar 

  28. Leray J. Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Mathematica, 1934, 63: 193–248

    Article  MathSciNet  Google Scholar 

  29. Ladyzhenskaya O A. On uniqueness and smoothness of generalized solutions to the Navier-Stokes equations. Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, 1969, 5: 60–66

    Google Scholar 

  30. Lian W, Zhang R. Global weak solutions to the active hydrodynamics of liquid crystals. Journal of Differential Equations, 2020, 268(8): 4194–4221

    Article  MathSciNet  Google Scholar 

  31. Lions P L, Masmoudi N. Uniqueness of mild solutions of the Navier-Stokes system in LN. Communications in Partial Differential Equations, 2001, 26(11/12): 2211–2226

    Article  MathSciNet  Google Scholar 

  32. Lin F, Wang C. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2029): 20130361

    Article  MathSciNet  Google Scholar 

  33. Lemarié-Rieusset P G. The Navier-Stokes Problem in the 21st Century. Boca, Raton: CRC Press, 2018

    Book  Google Scholar 

  34. Luo X. Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions. Archive for Rational Mechanics and Analysis, 2019, 233(2): 701–747

    Article  MathSciNet  Google Scholar 

  35. Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Annali di Matematica Pura ed Applicata, 1959, 48(1): 173–182

    Article  MathSciNet  Google Scholar 

  36. Paicu M, Zarnescu A. Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system. SIAM Journal on Mathematical Analysis, 2011, 43(5): 2009–2049

    Article  MathSciNet  Google Scholar 

  37. Paicu M, Zarnescu A. Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system. Archive for Rational Mechanics and Analysis, 2012, 203: 45–67

    Article  MathSciNet  Google Scholar 

  38. Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Archive for Rational Mechanics and Analysis, 1962, 9: 187–191

    Article  MathSciNet  Google Scholar 

  39. Serrin J. The initial value problem for the Navier-Stokes equations//Langer R E. Nonlinear Problems. Wisconsin: Univ Wisconsin Press, 1963: 69–98

    Google Scholar 

  40. Shinbrot M. The energy equation for the Navier-Stokes system. SIAM Journal on Mathematical Analysis, 1974, 5(6): 948–954

    Article  MathSciNet  Google Scholar 

  41. Struwe M. On partial regularity results for the Navier-Stokes equations. Communications on Pure and Applied Mathematics, 1988, 41(4): 437–458

    Article  MathSciNet  Google Scholar 

  42. Wilkinson M. Strictly physical global weak solutions of a Navier-Stokes Q-tensor system with singular potential. Archive for Rational Mechanics and Analysis, 2015, 218(1): 487–526

    Article  MathSciNet  Google Scholar 

  43. Wang D, Xu X, Yu C. Global weak solution for a coupled compressible Navier-Stokes and Q-tensor system. Communications in Mathematical Sciences, 2015, 13(1): 49–82

    Article  MathSciNet  Google Scholar 

  44. Xiao Y. Global strong solution to the three-dimensional liquid crystal flows of Q-tensor model. Journal of Differential Equations, 2017, 262(3): 1291–1316

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Li.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

This work was partially supported by NSFC (11831003, 12031012) and the Institute of Modern Analysis-A Frontier Research Center of Shanghai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, C. Weak-strong uniqueness for three dimensional incompressible active liquid crystals. Acta Math Sci 44, 1415–1440 (2024). https://doi.org/10.1007/s10473-024-0413-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0413-7

Key words

2020 MR Subject Classification

Navigation