Skip to main content

Advertisement

Log in

Airborne bacteria and fungi in a wastewater treatment plant: type and characterization of bio-aerosols, emission characterization and mapping

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Exposure to bioaerosols causes infection, over-sensitivity, respiratory, and lung diseases. This study was conducted at Sanandaj wastewater treatment plant in three seasons of winter, spring and summer to investigate the type and density of bio-aerosols. Sampling was performed using a sampling pump with a discharge rate of 28.3 L/min at a height of 1.5 m above the ground; the samples were taken from five stations: treatment plant entrance, aeration tank, grit chamber, drying sludge bed and laboratory. At each sampling point, time, temperature, relative humidity (Soleimani et al.), wind speed and particulate matter were recorded. In order to identify the bacteria, polymerase chain reaction (PCR) and culture-based methods were applied. It was also found that there was not a significant relationship between bacterial count and RH, wind direction, wind speed and temperature. Regarding fungi, the results showed that RH and wind direction and wind has a significant relationship with the concentration of fungi. The most predominant bacteria and fungi were as follows: Staphylococcus, Enterobacteriaceae, Bacillus, Acinetobacter, Micrococcus, Enterococcus, Neisseria, Listeria, and Pseudomonas and Penicillium, Aspergillus flavus. The concentration of bacteria in the air was significantly correlated with < 4, < 5, < 7 and < 10 μm suspended particles. However, there was a correlation between particle number of 10 μm and fungi concentration in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article.

References

  • Andualem, Z., Gizaw, Z., Bogale, L., & Dagne, H. (2019). Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidisciplinary Respiratory Medicine, 14, 2.

  • Aslanzadeh, J. (2006). Biochemical profile-based microbial identification systems. Advanced techniques in diagnostic microbiology, 84–116.

  • Awad, A. H., Saeed, Y., Hassan, Y., Fawzy, Y., & Osman, M. (2018). Air microbial quality in certain public buildings, Egypt: A comparative study. Atmospheric Pollution Research, 9, 617–626.

    Article  Google Scholar 

  • Baird, R. (1998). Pharmaceutical microbiology.

  • Behdarvand, N., Godini, E., Godini, H., & ShamsKhoramabadi, G. (2017). Study of effective factors on E. coli removal from water using solar radiation disinfection. Journal of Environmental Health Enginering, 5, 73–82.

    Article  Google Scholar 

  • Brągoszewska, E., Mainka, A., & Pastuszka, J. (2017). Concentration and size distribution of culturable bacteria in ambient air during spring and winter in Gliwice: A typical urban area. Atmosphere, 8, 239.

    Article  CAS  Google Scholar 

  • Brągoszewska, E., & Pastuszka, J. S. (2018). Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia, 34, 241–255.

    Article  Google Scholar 

  • Breza-Boruta, B, Paluszak, Z. (2007). Influence of water treatment plant on microbiological composition of air bioaerosol. Polish Journal of Environmental Studies, 16.

  • Brisebois, E., Veillette, M., Dion-Dupont, V., Lavoie, J., Corbeil, J., Culley, A., & Duchaine, C. (2018). Human viral pathogens are pervasive in wastewater treatment center aerosols. Journal of Environmental Sciences, 67, 45–53.

    Article  CAS  Google Scholar 

  • Choobineh, A., Rostami, R., & Tabatabaei, S. H. (2009). Assessment of bioaerosols types and concentration in ambient air of Shiraz University of Medical Sciences educational hospitals, 2008. Iran Occupational Health, 6, 69–76.

    Google Scholar 

  • Ding, W., Li, L., Han, Y., Liu, J., & Liu, J. (2016). Site-related and seasonal variation of bioaerosol emission in an indoor wastewater treatment station: Level, characteristics of particle size, and microbial structure. Aerobiologia, 32, 211–224.

    Article  Google Scholar 

  • Dutkiewicz, J., Cholewa, G., Sitkowska, J., Krysinska-Traczyk, E., Skorska, C., & Prazmo, Z. (2003). Exposure to bioaerosols in a municipal sewage treatment plant. Annals of Agricultural and Environmental Medicine, 10, e8.

    Google Scholar 

  • Falahati, M., Ebrahimi, M., Salek, M. A. R., Roudbary, M., Ghanbari, S., Mokhtarian, K., Khoshmirsafa, M., & Falak, R. (2017). Comparison of ige-reactivity of aspergillus fumigatus, aspergillus flavous and aspergillus niger with type 1 hypersensitive patients’sera. Razi Journal of Medical Sciences, 23, 10–20.

    Google Scholar 

  • Fan, C., Li, Y., Liu, P., Mu, F., Xie, Z., Lu, R., Qi, Y., Wang, B., & Jin, C. (2019). Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Science of the Total Environment, 672, 834–845.

    Article  CAS  Google Scholar 

  • Fathi, S., Hajizadeh, Y., Nikaeen, M., & Gorbani, M. (2017). Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process. Aerobiologia, 33, 507–515.

    Article  Google Scholar 

  • Fernandez, M. O., Thomas, R. J., Garton, N. J., Hudson, A., Haddrell, A., & Reid, J. P. (2019). Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. Journal of the Royal Society, Interface, 16, 20180779–20180779.

    Article  CAS  Google Scholar 

  • Filipkowska, Z., Janczukowicz, W., Krzemieniewski, M., Pesta, J. (2002). Municipal wastewater treatment plant with activated sludge tanks aerated by CELPOX Devices as a source of microbiological pollution of the atmosphere. Polish Journal of Environmental Studies, 11.

  • Fracchia, L., Pietronave, S., Rinaldi, M., & Martinotti, M. G. (2006). Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants. Water Research, 40, 1985–1994.

    Article  CAS  Google Scholar 

  • Gotkowska-Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W., Dixon, B., Gołaś, I., & Szwalgin, D. (2013). Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes. CLEAN–Soil. Air, Water, 41, 429–436.

    Article  CAS  Google Scholar 

  • Heinonen-Tanski, H., Reponen, T., & Koivunen, J. (2009). Airborne enteric coliphages and bacteria in sewage treatment plants. Water Research, 43, 2558–2566.

    Article  CAS  Google Scholar 

  • Hua, N.-P., Kobayashi, F., Iwasaka, Y., Shi, G.-Y., & Naganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291–298.

    Article  Google Scholar 

  • Jamriska, M., DuBois, T. C., & Skvortsov, A. (2012). Statistical characterisation of bio-aerosol background in an urban environment. Atmospheric Environment, 54, 439–448.

    Article  CAS  Google Scholar 

  • Karra, S., & Katsivela, E. (2007). Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site. Water Research, 41, 1355–1365.

    Article  CAS  Google Scholar 

  • Katsivela, E., Latos, E., Raisi, L., Aleksandropoulou, V., & Lazaridis, M. (2017). Particle size distribution of cultivable airborne microbes and inhalable particulate matter in a wastewater treatment plant facility. Aerobiologia, 33, 297–314.

    Article  Google Scholar 

  • Kermani, M., Dehghani, A., Farzadkia, M., Nadafi, K., Bahrami Asl, F., & Zeinalzadeh, D. (2015). Investigation of airborne bactria and fungi in Tehran’s Shahrake Ghods WWTP and its association with environmental parameters. Journal of Health, 6, 57–68.

    Google Scholar 

  • Khodarahmi, F. (2015). Study of type and density of bacteria from Ahvaz air in normal and dusty conditions during different seasons. Scientific Journal of Ilam University of Medical Sciences, 23, 143–152.

    Google Scholar 

  • Khodarahmi, F., Godarzi, G., & Hashemishahraki, A. (2015). Study of relationbetween actinomycetes growth potential with the concentration of suspended particles and environmental conditions in normal and dusty conditions and in Ahvaz during different seasons in 2011–2012 years. Scientific Journal of Ilam University of Medical Sciences, 23, 69–80.

    Google Scholar 

  • Korzeniewska, E. J. F. B. (2011). Emission of bacteria and fungi in the air from wastewater treatment plants-a review. Frontiers in Bioscience, 3, 393–407.

    Article  Google Scholar 

  • Krumins, V., Mainelis, G., Kerkhof, L. J., Fennell, D. E. J. E. S., & Letters, T. (2014). Substrate-dependent rRNA production in an airborne bacterium. ACS Publications, 1, 376–381.

    CAS  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., & Battistuzzi, U. F. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096.

    Article  CAS  Google Scholar 

  • Li, J., Zhou, L., Zhang, X., Xu, C., Dong, L., & Yao, M. (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124, 404–412.

    Article  CAS  Google Scholar 

  • Li, L., Gao, M., & Liu, J. (2011). Distribution characterization of microbial aerosols emitted from a wastewater treatment plant using the Orbal oxidation ditch process. Process Biochemistry, 46, 910–915.

    Article  CAS  Google Scholar 

  • Li, S., Feng, K., & Li, M. (2017). Identifying the main contributors of air pollution in Beijing. Journal of Cleaner Production, 163, S359–S365.

    Article  CAS  Google Scholar 

  • Lin, W.-H., & Li, C.-S. (2000). Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Science & Technology, 32, 359–368.

    Article  CAS  Google Scholar 

  • Małecka-Adamowicz, M., Donderski, W., Dokładna, W. (2011). Microflora of air in the sewage treatment plant of kapuściska in Bydgoszcz. Polish Journal of Environmental Studies, 20.

  • Masclaux, F. G., Hotz, P., Gashi, D., Savova-Bianchi, D., & Oppliger, A. J. E. R. (2014). Assessment of airborne virus contamination in wastewater treatment plants. Environmental Research, 133, 260–265.

    Article  CAS  Google Scholar 

  • Oppliger, A., Hilfiker, S., & Vu Duc, T. (2005). Influence of seasons and sampling strategy on assessment of bioaerosols in sewage treatment plants in Switzerland. Annals of Occupational Hygiene, 49, 393–400.

    CAS  Google Scholar 

  • Orsini, M., Laurenti, P., Boninti, F., Arzani, D., Ianni, A., & Romano-Spica, V. J. W. R. (2002). A molecular typing approach for evaluating bioaerosol exposure in wastewater treatment plant workers. Water Research, 36, 1375–1378.

    Article  CAS  Google Scholar 

  • Park, D., Kim, Y.-H., Park, C. W., Hwang, J., & Kim, Y.-J. (2009). New bio-aerosol collector using a micromachined virtual impactor. Journal of Aerosol Science, 40, 415–422.

    Article  CAS  Google Scholar 

  • Pascual, L., Pérez-Luz, S., Yáñez, M. A., Santamaría, A., Gibert, K., Salgot, M., Apraiz, D., & Catalán, V. (2003). Bioaerosol emission from wastewater treatment plants. Aerobiologia, 19, 261–270.

    Article  Google Scholar 

  • Sánchez-Monedero, M., Aguilar, M., Fenoll, R., & Roig, A. (2008). Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42, 3739–3744.

    Article  CAS  Google Scholar 

  • Soleimani, Z., Parhizgari, N., Rad, H. D., Akhoond, M. R., Kermani, M., Marzouni, M. B., Goudarzi, H., & Goudarzi, G. (2015). Normal and dusty days comparison of culturable indoor airborne bacteria in Ahvaz, Iran. Aerobiologia, 31, 127–141.

    Article  Google Scholar 

  • Surfer. (1999). Surfer 7.0. Contouring and 3D surface mapping for scientist's engineers: User's Guide. Golden software New York.

  • Szyłak-Szydłowski, M., Kulig, A., & Miaśkiewicz-Pęska, E. (2016). Seasonal changes in the concentrations of airborne bacteria emitted from a large wastewater treatment plant. International Biodeterioration & Biodegradation, 115, 11–16.

    Article  Google Scholar 

  • Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society Interface, 6, S737–S746.

    Google Scholar 

  • Turner, S., Pryer, K. M., Miao, V. P., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 1(46), 327–338.

    Article  Google Scholar 

  • Xia, Y. (2020). Correlation and association analyses in microbiome study integrating multiomics in health and disease. Progress in Molecular Biology and Translational Science, 171, 309–491.

    Article  CAS  Google Scholar 

  • Xu, Y., Zheng, C., Liu, Z., & Yan, K. (2013). Electrostatic precipitation of airborne bio-aerosols. Journal of Electrostatics, 71, 204–207.

    Article  CAS  Google Scholar 

  • Yang, K., Li, L., Wang, Y., Xue, S., Han, Y., & Liu, J. (2019). Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Research, 149, 596–606.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was extracted from the MSc dissertation of the first author. The authors would like to thank Kurdistan University of Medical Sciences for its financial support provided for this research work (IR.MUK.REC.1397/164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jari, H., Maleki, A., Dehestani Athar, S. et al. Airborne bacteria and fungi in a wastewater treatment plant: type and characterization of bio-aerosols, emission characterization and mapping. Aerobiologia 38, 163–176 (2022). https://doi.org/10.1007/s10453-022-09740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-022-09740-z

Keywords

Navigation